Performance of data-driven inner speech decoding with same-task EEG-fMRI data fusion and bimodal models Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.10854
Decoding inner speech from the brain signal via hybridisation of fMRI and EEG data is explored to investigate the performance benefits over unimodal models. Two different bimodal fusion approaches are examined: concatenation of probability vectors output from unimodal fMRI and EEG machine learning models, and data fusion with feature engineering. Same task inner speech data are recorded from four participants, and different processing strategies are compared and contrasted to previously-employed hybridisation methods. Data across participants are discovered to encode different underlying structures, which results in varying decoding performances between subject-dependent fusion models. Decoding performance is demonstrated as improved when pursuing bimodal fMRI-EEG fusion strategies, if the data show underlying structure.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.10854
- https://arxiv.org/pdf/2306.10854
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4381568455
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4381568455Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.10854Digital Object Identifier
- Title
-
Performance of data-driven inner speech decoding with same-task EEG-fMRI data fusion and bimodal modelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-19Full publication date if available
- Authors
-
Holly Wilson, Scott Wellington, Foteini Liwicki, Vibha Gupta, Rajkumar Saini, Kanjar De, Nosheen Abid, Sumit Rakesh, Johan G. Eriksson, Oliver Watts, Xi Chen, Mohammad Golbabaee, Michael J. Proulx, Marcus Liwicki, Eamonn O’Neill, Benjamin MetcalfeList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.10854Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.10854Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.10854Direct OA link when available
- Concepts
-
Concatenation (mathematics), Decoding methods, Computer science, Electroencephalography, Task (project management), Speech recognition, Sensor fusion, Artificial intelligence, Pattern recognition (psychology), Feature (linguistics), Functional magnetic resonance imaging, Fusion, Psychology, Neuroscience, Mathematics, Algorithm, Combinatorics, Management, Linguistics, Economics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4381568455 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.10854 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.10854 |
| ids.openalex | https://openalex.org/W4381568455 |
| fwci | |
| type | preprint |
| title | Performance of data-driven inner speech decoding with same-task EEG-fMRI data fusion and bimodal models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11447 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Blind Source Separation Techniques |
| topics[1].id | https://openalex.org/T10860 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Speech and Audio Processing |
| topics[2].id | https://openalex.org/T11698 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9937000274658203 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1910 |
| topics[2].subfield.display_name | Oceanography |
| topics[2].display_name | Underwater Acoustics Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C87619178 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8615394234657288 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q126002 |
| concepts[0].display_name | Concatenation (mathematics) |
| concepts[1].id | https://openalex.org/C57273362 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8537905216217041 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[1].display_name | Decoding methods |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6425501108169556 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C522805319 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6230064630508423 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[3].display_name | Electroencephalography |
| concepts[4].id | https://openalex.org/C2780451532 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5994963645935059 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[4].display_name | Task (project management) |
| concepts[5].id | https://openalex.org/C28490314 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5386573672294617 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[5].display_name | Speech recognition |
| concepts[6].id | https://openalex.org/C33954974 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4993269443511963 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q486494 |
| concepts[6].display_name | Sensor fusion |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4906250536441803 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46553531289100647 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C2776401178 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4529416263103485 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[9].display_name | Feature (linguistics) |
| concepts[10].id | https://openalex.org/C2779226451 |
| concepts[10].level | 2 |
| concepts[10].score | 0.44568008184432983 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q903809 |
| concepts[10].display_name | Functional magnetic resonance imaging |
| concepts[11].id | https://openalex.org/C158525013 |
| concepts[11].level | 2 |
| concepts[11].score | 0.434139609336853 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[11].display_name | Fusion |
| concepts[12].id | https://openalex.org/C15744967 |
| concepts[12].level | 0 |
| concepts[12].score | 0.25811922550201416 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[12].display_name | Psychology |
| concepts[13].id | https://openalex.org/C169760540 |
| concepts[13].level | 1 |
| concepts[13].score | 0.12707218527793884 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[13].display_name | Neuroscience |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.08831074833869934 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C11413529 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0660024881362915 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[15].display_name | Algorithm |
| concepts[16].id | https://openalex.org/C114614502 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[16].display_name | Combinatorics |
| concepts[17].id | https://openalex.org/C187736073 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[17].display_name | Management |
| concepts[18].id | https://openalex.org/C41895202 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[18].display_name | Linguistics |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/concatenation |
| keywords[0].score | 0.8615394234657288 |
| keywords[0].display_name | Concatenation (mathematics) |
| keywords[1].id | https://openalex.org/keywords/decoding-methods |
| keywords[1].score | 0.8537905216217041 |
| keywords[1].display_name | Decoding methods |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6425501108169556 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/electroencephalography |
| keywords[3].score | 0.6230064630508423 |
| keywords[3].display_name | Electroencephalography |
| keywords[4].id | https://openalex.org/keywords/task |
| keywords[4].score | 0.5994963645935059 |
| keywords[4].display_name | Task (project management) |
| keywords[5].id | https://openalex.org/keywords/speech-recognition |
| keywords[5].score | 0.5386573672294617 |
| keywords[5].display_name | Speech recognition |
| keywords[6].id | https://openalex.org/keywords/sensor-fusion |
| keywords[6].score | 0.4993269443511963 |
| keywords[6].display_name | Sensor fusion |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4906250536441803 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.46553531289100647 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/feature |
| keywords[9].score | 0.4529416263103485 |
| keywords[9].display_name | Feature (linguistics) |
| keywords[10].id | https://openalex.org/keywords/functional-magnetic-resonance-imaging |
| keywords[10].score | 0.44568008184432983 |
| keywords[10].display_name | Functional magnetic resonance imaging |
| keywords[11].id | https://openalex.org/keywords/fusion |
| keywords[11].score | 0.434139609336853 |
| keywords[11].display_name | Fusion |
| keywords[12].id | https://openalex.org/keywords/psychology |
| keywords[12].score | 0.25811922550201416 |
| keywords[12].display_name | Psychology |
| keywords[13].id | https://openalex.org/keywords/neuroscience |
| keywords[13].score | 0.12707218527793884 |
| keywords[13].display_name | Neuroscience |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.08831074833869934 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/algorithm |
| keywords[15].score | 0.0660024881362915 |
| keywords[15].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.10854 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.10854 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.10854 |
| locations[1].id | doi:10.48550/arxiv.2306.10854 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.10854 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5062730648 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7072-5803 |
| authorships[0].author.display_name | Holly Wilson |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wilson, Holly |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5022216237 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8384-8474 |
| authorships[1].author.display_name | Scott Wellington |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wellington, Scott |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5078332729 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6756-0147 |
| authorships[2].author.display_name | Foteini Liwicki |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liwicki, Foteini Simistira |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101448150 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3785-8380 |
| authorships[3].author.display_name | Vibha Gupta |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gupta, Vibha |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5036975174 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8532-0895 |
| authorships[4].author.display_name | Rajkumar Saini |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Saini, Rajkumar |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101568021 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0221-8268 |
| authorships[5].author.display_name | Kanjar De |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | De, Kanjar |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5082754109 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5922-7889 |
| authorships[6].author.display_name | Nosheen Abid |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Abid, Nosheen |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5024945302 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Sumit Rakesh |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Rakesh, Sumit |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5011338575 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-2516-2060 |
| authorships[8].author.display_name | Johan G. Eriksson |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Eriksson, Johan |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5110238677 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Oliver Watts |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Watts, Oliver |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5100718286 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-2254-460X |
| authorships[10].author.display_name | Xi Chen |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Chen, Xi |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5056404513 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-5822-2990 |
| authorships[11].author.display_name | Mohammad Golbabaee |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Golbabaee, Mohammad |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5035093993 |
| authorships[12].author.orcid | https://orcid.org/0000-0003-4066-3645 |
| authorships[12].author.display_name | Michael J. Proulx |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Proulx, Michael J. |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5073619925 |
| authorships[13].author.orcid | https://orcid.org/0000-0003-4029-6574 |
| authorships[13].author.display_name | Marcus Liwicki |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Liwicki, Marcus |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5085864714 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-1637-458X |
| authorships[14].author.display_name | Eamonn O’Neill |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | O'Neill, Eamonn |
| authorships[14].is_corresponding | False |
| authorships[15].author.id | https://openalex.org/A5056752831 |
| authorships[15].author.orcid | https://orcid.org/0000-0003-4279-8930 |
| authorships[15].author.display_name | Benjamin Metcalfe |
| authorships[15].author_position | last |
| authorships[15].raw_author_name | Metcalfe, Benjamin |
| authorships[15].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.10854 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Performance of data-driven inner speech decoding with same-task EEG-fMRI data fusion and bimodal models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11447 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Blind Source Separation Techniques |
| related_works | https://openalex.org/W2373577936, https://openalex.org/W4387678054, https://openalex.org/W3095575180, https://openalex.org/W2132659060, https://openalex.org/W2031992971, https://openalex.org/W3214791684, https://openalex.org/W2353265673, https://openalex.org/W2031175860, https://openalex.org/W2152662039, https://openalex.org/W2145797872 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.10854 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.10854 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.10854 |
| primary_location.id | pmh:oai:arXiv.org:2306.10854 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.10854 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.10854 |
| publication_date | 2023-06-19 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.as | 96 |
| abstract_inverted_index.if | 104 |
| abstract_inverted_index.in | 84 |
| abstract_inverted_index.is | 14, 94 |
| abstract_inverted_index.of | 9, 32 |
| abstract_inverted_index.to | 16, 68, 77 |
| abstract_inverted_index.EEG | 12, 40 |
| abstract_inverted_index.Two | 24 |
| abstract_inverted_index.and | 11, 39, 44, 60, 66 |
| abstract_inverted_index.are | 29, 55, 64, 75 |
| abstract_inverted_index.the | 4, 18, 105 |
| abstract_inverted_index.via | 7 |
| abstract_inverted_index.Data | 72 |
| abstract_inverted_index.Same | 50 |
| abstract_inverted_index.data | 13, 45, 54, 106 |
| abstract_inverted_index.fMRI | 10, 38 |
| abstract_inverted_index.four | 58 |
| abstract_inverted_index.from | 3, 36, 57 |
| abstract_inverted_index.over | 21 |
| abstract_inverted_index.show | 107 |
| abstract_inverted_index.task | 51 |
| abstract_inverted_index.when | 98 |
| abstract_inverted_index.with | 47 |
| abstract_inverted_index.brain | 5 |
| abstract_inverted_index.inner | 1, 52 |
| abstract_inverted_index.which | 82 |
| abstract_inverted_index.across | 73 |
| abstract_inverted_index.encode | 78 |
| abstract_inverted_index.fusion | 27, 46, 90, 102 |
| abstract_inverted_index.output | 35 |
| abstract_inverted_index.signal | 6 |
| abstract_inverted_index.speech | 2, 53 |
| abstract_inverted_index.between | 88 |
| abstract_inverted_index.bimodal | 26, 100 |
| abstract_inverted_index.feature | 48 |
| abstract_inverted_index.machine | 41 |
| abstract_inverted_index.models, | 43 |
| abstract_inverted_index.models. | 23, 91 |
| abstract_inverted_index.results | 83 |
| abstract_inverted_index.varying | 85 |
| abstract_inverted_index.vectors | 34 |
| abstract_inverted_index.Decoding | 0, 92 |
| abstract_inverted_index.benefits | 20 |
| abstract_inverted_index.compared | 65 |
| abstract_inverted_index.decoding | 86 |
| abstract_inverted_index.explored | 15 |
| abstract_inverted_index.fMRI-EEG | 101 |
| abstract_inverted_index.improved | 97 |
| abstract_inverted_index.learning | 42 |
| abstract_inverted_index.methods. | 71 |
| abstract_inverted_index.pursuing | 99 |
| abstract_inverted_index.recorded | 56 |
| abstract_inverted_index.unimodal | 22, 37 |
| abstract_inverted_index.different | 25, 61, 79 |
| abstract_inverted_index.examined: | 30 |
| abstract_inverted_index.approaches | 28 |
| abstract_inverted_index.contrasted | 67 |
| abstract_inverted_index.discovered | 76 |
| abstract_inverted_index.processing | 62 |
| abstract_inverted_index.strategies | 63 |
| abstract_inverted_index.structure. | 109 |
| abstract_inverted_index.underlying | 80, 108 |
| abstract_inverted_index.investigate | 17 |
| abstract_inverted_index.performance | 19, 93 |
| abstract_inverted_index.probability | 33 |
| abstract_inverted_index.strategies, | 103 |
| abstract_inverted_index.structures, | 81 |
| abstract_inverted_index.demonstrated | 95 |
| abstract_inverted_index.engineering. | 49 |
| abstract_inverted_index.participants | 74 |
| abstract_inverted_index.performances | 87 |
| abstract_inverted_index.concatenation | 31 |
| abstract_inverted_index.hybridisation | 8, 70 |
| abstract_inverted_index.participants, | 59 |
| abstract_inverted_index.subject-dependent | 89 |
| abstract_inverted_index.previously-employed | 69 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 16 |
| citation_normalized_percentile |