Performance of early warning signals for disease re-emergence: A case study on COVID-19 data Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pcbi.1009958
Developing measures for rapid and early detection of disease re-emergence is important to perform science-based risk assessment of epidemic threats. In the past few years, several early warning signals (EWS) from complex systems theory have been introduced to detect impending critical transitions and extend the set of indicators. However, it is still debated whether they are generically applicable or potentially sensitive to some dynamical characteristics such as system noise and rates of approach to critical parameter values. Moreover, testing on empirical data has, so far, been limited. Hence, verifying EWS performance remains a challenge. In this study, we tackle this question by analyzing the performance of common EWS, such as increasing variance and autocorrelation, in detecting the emergence of COVID-19 outbreaks in various countries. Our work illustrates that these EWS might be successful in detecting disease emergence when some basic assumptions are satisfied: a slow forcing through the transitions and not-fat-tailed noise. In uncertain cases, we observe that noise properties or commensurable time scales may obscure the expected early warning signals. Overall, our results suggest that EWS can be useful for active monitoring of epidemic dynamics, but that their performance is sensitive to certain features of the underlying dynamics. Our findings thus pave a connection between theoretical and empirical studies, constituting a further step towards the application of EWS indicators for informing public health policies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pcbi.1009958
- OA Status
- gold
- Cited By
- 32
- References
- 66
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4220706185
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4220706185Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pcbi.1009958Digital Object Identifier
- Title
-
Performance of early warning signals for disease re-emergence: A case study on COVID-19 dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-30Full publication date if available
- Authors
-
Daniele Proverbio, Françoise Kemp, Stefano Magni, Jorge GonçalvesList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pcbi.1009958Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1371/journal.pcbi.1009958Direct OA link when available
- Concepts
-
Warning system, Noise (video), Computer science, Variance (accounting), Coronavirus disease 2019 (COVID-19), Set (abstract data type), Econometrics, Data science, Autocorrelation, Disease, Risk analysis (engineering), Artificial intelligence, Statistics, Mathematics, Medicine, Infectious disease (medical specialty), Business, Pathology, Accounting, Image (mathematics), Telecommunications, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
32Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 13, 2024: 6, 2023: 8, 2022: 5Per-year citation counts (last 5 years)
- References (count)
-
66Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4220706185 |
|---|---|
| doi | https://doi.org/10.1371/journal.pcbi.1009958 |
| ids.doi | https://doi.org/10.1371/journal.pcbi.1009958 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35353809 |
| ids.openalex | https://openalex.org/W4220706185 |
| fwci | 4.37288635 |
| mesh[0].qualifier_ui | Q000175 |
| mesh[0].descriptor_ui | D000086382 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | diagnosis |
| mesh[0].descriptor_name | COVID-19 |
| mesh[1].qualifier_ui | Q000453 |
| mesh[1].descriptor_ui | D000086382 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | epidemiology |
| mesh[1].descriptor_name | COVID-19 |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D058872 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Epidemics |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D018570 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Risk Assessment |
| mesh[5].qualifier_ui | Q000175 |
| mesh[5].descriptor_ui | D000086382 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | diagnosis |
| mesh[5].descriptor_name | COVID-19 |
| mesh[6].qualifier_ui | Q000453 |
| mesh[6].descriptor_ui | D000086382 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | epidemiology |
| mesh[6].descriptor_name | COVID-19 |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D058872 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Epidemics |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006801 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Humans |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D018570 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Risk Assessment |
| type | article |
| title | Performance of early warning signals for disease re-emergence: A case study on COVID-19 data |
| biblio.issue | 3 |
| biblio.volume | 18 |
| biblio.last_page | e1009958 |
| biblio.first_page | e1009958 |
| grants[0].funder | https://openalex.org/F4320321038 |
| grants[0].award_id | PRIDE17/12244779/PARK-QC |
| grants[0].funder_display_name | Fonds National de la Recherche Luxembourg |
| topics[0].id | https://openalex.org/T13377 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Ecosystem dynamics and resilience |
| topics[1].id | https://openalex.org/T11270 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9911999702453613 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Complex Systems and Time Series Analysis |
| topics[2].id | https://openalex.org/T10410 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9901000261306763 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2611 |
| topics[2].subfield.display_name | Modeling and Simulation |
| topics[2].display_name | COVID-19 epidemiological studies |
| funders[0].id | https://openalex.org/F4320321038 |
| funders[0].ror | https://ror.org/039z13y21 |
| funders[0].display_name | Fonds National de la Recherche Luxembourg |
| is_xpac | False |
| apc_list.value | 2655 |
| apc_list.currency | USD |
| apc_list.value_usd | 2655 |
| apc_paid.value | 2655 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2655 |
| concepts[0].id | https://openalex.org/C29825287 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6661829948425293 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1427940 |
| concepts[0].display_name | Warning system |
| concepts[1].id | https://openalex.org/C99498987 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5772978067398071 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[1].display_name | Noise (video) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5771358013153076 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C196083921 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5188428163528442 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[3].display_name | Variance (accounting) |
| concepts[4].id | https://openalex.org/C3008058167 |
| concepts[4].level | 4 |
| concepts[4].score | 0.46778571605682373 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[4].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[5].id | https://openalex.org/C177264268 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4488086700439453 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[5].display_name | Set (abstract data type) |
| concepts[6].id | https://openalex.org/C149782125 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4448167681694031 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[6].display_name | Econometrics |
| concepts[7].id | https://openalex.org/C2522767166 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4435498118400574 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[7].display_name | Data science |
| concepts[8].id | https://openalex.org/C5297727 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44351568818092346 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q786970 |
| concepts[8].display_name | Autocorrelation |
| concepts[9].id | https://openalex.org/C2779134260 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3852940499782562 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[9].display_name | Disease |
| concepts[10].id | https://openalex.org/C112930515 |
| concepts[10].level | 1 |
| concepts[10].score | 0.37608861923217773 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q4389547 |
| concepts[10].display_name | Risk analysis (engineering) |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3372964859008789 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.27565956115722656 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2091447114944458 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C71924100 |
| concepts[14].level | 0 |
| concepts[14].score | 0.20350992679595947 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[14].display_name | Medicine |
| concepts[15].id | https://openalex.org/C524204448 |
| concepts[15].level | 3 |
| concepts[15].score | 0.12571769952774048 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[15].display_name | Infectious disease (medical specialty) |
| concepts[16].id | https://openalex.org/C144133560 |
| concepts[16].level | 0 |
| concepts[16].score | 0.10631135106086731 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[16].display_name | Business |
| concepts[17].id | https://openalex.org/C142724271 |
| concepts[17].level | 1 |
| concepts[17].score | 0.086771160364151 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[17].display_name | Pathology |
| concepts[18].id | https://openalex.org/C121955636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[18].display_name | Accounting |
| concepts[19].id | https://openalex.org/C115961682 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[19].display_name | Image (mathematics) |
| concepts[20].id | https://openalex.org/C76155785 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[20].display_name | Telecommunications |
| concepts[21].id | https://openalex.org/C199360897 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[21].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/warning-system |
| keywords[0].score | 0.6661829948425293 |
| keywords[0].display_name | Warning system |
| keywords[1].id | https://openalex.org/keywords/noise |
| keywords[1].score | 0.5772978067398071 |
| keywords[1].display_name | Noise (video) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5771358013153076 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/variance |
| keywords[3].score | 0.5188428163528442 |
| keywords[3].display_name | Variance (accounting) |
| keywords[4].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[4].score | 0.46778571605682373 |
| keywords[4].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[5].id | https://openalex.org/keywords/set |
| keywords[5].score | 0.4488086700439453 |
| keywords[5].display_name | Set (abstract data type) |
| keywords[6].id | https://openalex.org/keywords/econometrics |
| keywords[6].score | 0.4448167681694031 |
| keywords[6].display_name | Econometrics |
| keywords[7].id | https://openalex.org/keywords/data-science |
| keywords[7].score | 0.4435498118400574 |
| keywords[7].display_name | Data science |
| keywords[8].id | https://openalex.org/keywords/autocorrelation |
| keywords[8].score | 0.44351568818092346 |
| keywords[8].display_name | Autocorrelation |
| keywords[9].id | https://openalex.org/keywords/disease |
| keywords[9].score | 0.3852940499782562 |
| keywords[9].display_name | Disease |
| keywords[10].id | https://openalex.org/keywords/risk-analysis |
| keywords[10].score | 0.37608861923217773 |
| keywords[10].display_name | Risk analysis (engineering) |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.3372964859008789 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.27565956115722656 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.2091447114944458 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/medicine |
| keywords[14].score | 0.20350992679595947 |
| keywords[14].display_name | Medicine |
| keywords[15].id | https://openalex.org/keywords/infectious-disease |
| keywords[15].score | 0.12571769952774048 |
| keywords[15].display_name | Infectious disease (medical specialty) |
| keywords[16].id | https://openalex.org/keywords/business |
| keywords[16].score | 0.10631135106086731 |
| keywords[16].display_name | Business |
| keywords[17].id | https://openalex.org/keywords/pathology |
| keywords[17].score | 0.086771160364151 |
| keywords[17].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.1371/journal.pcbi.1009958 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S86033158 |
| locations[0].source.issn | 1553-734X, 1553-7358 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1553-734X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS Computational Biology |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS Computational Biology |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pcbi.1009958 |
| locations[1].id | pmid:35353809 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PLoS computational biology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35353809 |
| locations[2].id | pmh:oai:iris.unitn.it:11572/397289 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401913 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Institutional Research Information System (Università degli Studi di Trento) |
| locations[2].source.host_organization | https://openalex.org/I193223587 |
| locations[2].source.host_organization_name | University of Trento |
| locations[2].source.host_organization_lineage | https://openalex.org/I193223587 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009958 |
| locations[3].id | pmh:oai:orbilu.uni.lu:10993/50892 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401815 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Open Repository and Bibliography (University of Luxembourg) |
| locations[3].source.host_organization | https://openalex.org/I186903577 |
| locations[3].source.host_organization_name | University of Luxembourg |
| locations[3].source.host_organization_lineage | https://openalex.org/I186903577 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | journal article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PLoS Computational Biology, 18 (3), e1009958 (2022) |
| locations[3].landing_page_url | https://orbilu.uni.lu/handle/10993/50892 |
| locations[4].id | pmh:oai:doaj.org/article:36c31301bedc4df595688f43d259b642 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306401280 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[4].source.host_organization | |
| locations[4].source.host_organization_name | |
| locations[4].source.host_organization_lineage | |
| locations[4].license | cc-by-sa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | article |
| locations[4].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | PLoS Computational Biology, Vol 18, Iss 3, p e1009958 (2022) |
| locations[4].landing_page_url | https://doaj.org/article/36c31301bedc4df595688f43d259b642 |
| locations[5].id | pmh:oai:pubmedcentral.nih.gov:9000113 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S2764455111 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | PubMed Central |
| locations[5].source.host_organization | https://openalex.org/I1299303238 |
| locations[5].source.host_organization_name | National Institutes of Health |
| locations[5].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[5].license | other-oa |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Text |
| locations[5].license_id | https://openalex.org/licenses/other-oa |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | PLoS Comput Biol |
| locations[5].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9000113 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5037164344 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0122-479X |
| authorships[0].author.display_name | Daniele Proverbio |
| authorships[0].countries | GB, LU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I186903577 |
| authorships[0].affiliations[0].raw_affiliation_string | Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I23923803 |
| authorships[0].affiliations[1].raw_affiliation_string | College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom |
| authorships[0].institutions[0].id | https://openalex.org/I23923803 |
| authorships[0].institutions[0].ror | https://ror.org/03yghzc09 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I23923803 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Exeter |
| authorships[0].institutions[1].id | https://openalex.org/I186903577 |
| authorships[0].institutions[1].ror | https://ror.org/036x5ad56 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I186903577 |
| authorships[0].institutions[1].country_code | LU |
| authorships[0].institutions[1].display_name | University of Luxembourg |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daniele Proverbio |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg |
| authorships[1].author.id | https://openalex.org/A5091254699 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5845-293X |
| authorships[1].author.display_name | Françoise Kemp |
| authorships[1].countries | LU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I186903577 |
| authorships[1].affiliations[0].raw_affiliation_string | Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg |
| authorships[1].institutions[0].id | https://openalex.org/I186903577 |
| authorships[1].institutions[0].ror | https://ror.org/036x5ad56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I186903577 |
| authorships[1].institutions[0].country_code | LU |
| authorships[1].institutions[0].display_name | University of Luxembourg |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Françoise Kemp |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg |
| authorships[2].author.id | https://openalex.org/A5089094325 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8649-3616 |
| authorships[2].author.display_name | Stefano Magni |
| authorships[2].countries | LU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I186903577 |
| authorships[2].affiliations[0].raw_affiliation_string | Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg |
| authorships[2].institutions[0].id | https://openalex.org/I186903577 |
| authorships[2].institutions[0].ror | https://ror.org/036x5ad56 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I186903577 |
| authorships[2].institutions[0].country_code | LU |
| authorships[2].institutions[0].display_name | University of Luxembourg |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Stefano Magni |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg |
| authorships[3].author.id | https://openalex.org/A5035877557 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5228-6165 |
| authorships[3].author.display_name | Jorge Gonçalves |
| authorships[3].countries | GB, LU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I186903577 |
| authorships[3].affiliations[1].raw_affiliation_string | Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg |
| authorships[3].institutions[0].id | https://openalex.org/I241749 |
| authorships[3].institutions[0].ror | https://ror.org/013meh722 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Cambridge |
| authorships[3].institutions[1].id | https://openalex.org/I186903577 |
| authorships[3].institutions[1].ror | https://ror.org/036x5ad56 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I186903577 |
| authorships[3].institutions[1].country_code | LU |
| authorships[3].institutions[1].display_name | University of Luxembourg |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jorge Gonçalves |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1371/journal.pcbi.1009958 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Performance of early warning signals for disease re-emergence: A case study on COVID-19 data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13377 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Ecosystem dynamics and resilience |
| related_works | https://openalex.org/W747394405, https://openalex.org/W1987236514, https://openalex.org/W174653542, https://openalex.org/W2381153750, https://openalex.org/W2088220880, https://openalex.org/W2041235277, https://openalex.org/W3121354342, https://openalex.org/W2060952610, https://openalex.org/W2391377755, https://openalex.org/W2128717546 |
| cited_by_count | 32 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 13 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| locations_count | 6 |
| best_oa_location.id | doi:10.1371/journal.pcbi.1009958 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S86033158 |
| best_oa_location.source.issn | 1553-734X, 1553-7358 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1553-734X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS Computational Biology |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS Computational Biology |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pcbi.1009958 |
| primary_location.id | doi:10.1371/journal.pcbi.1009958 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S86033158 |
| primary_location.source.issn | 1553-734X, 1553-7358 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1553-734X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS Computational Biology |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS Computational Biology |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pcbi.1009958 |
| publication_date | 2022-03-30 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3033094519, https://openalex.org/W2803383072, https://openalex.org/W2725900963, https://openalex.org/W3009751878, https://openalex.org/W2753470284, https://openalex.org/W3022576629, https://openalex.org/W2155653089, https://openalex.org/W2116199452, https://openalex.org/W2134761831, https://openalex.org/W2160885387, https://openalex.org/W3103645382, https://openalex.org/W2169715400, https://openalex.org/W2012469177, https://openalex.org/W3088138099, https://openalex.org/W2806697564, https://openalex.org/W2888251577, https://openalex.org/W3011882609, https://openalex.org/W3027104006, https://openalex.org/W3139832680, https://openalex.org/W3202538527, https://openalex.org/W4210911151, https://openalex.org/W3176429099, https://openalex.org/W2017731476, https://openalex.org/W3014001472, https://openalex.org/W3163461246, https://openalex.org/W3014442018, https://openalex.org/W3088170253, https://openalex.org/W1966512215, https://openalex.org/W4250883246, https://openalex.org/W2134205611, https://openalex.org/W2158678754, https://openalex.org/W3195588037, https://openalex.org/W2153268540, https://openalex.org/W2168773352, https://openalex.org/W2171351474, https://openalex.org/W3003573988, https://openalex.org/W3007602081, https://openalex.org/W2162233069, https://openalex.org/W2801493987, https://openalex.org/W1545410837, https://openalex.org/W3134841099, https://openalex.org/W3018782651, https://openalex.org/W3008443627, https://openalex.org/W6776917422, https://openalex.org/W4233751321, https://openalex.org/W2936927658, https://openalex.org/W2170330538, https://openalex.org/W3023729043, https://openalex.org/W3009983851, https://openalex.org/W2054379763, https://openalex.org/W2168487879, https://openalex.org/W4239181501, https://openalex.org/W2158698691, https://openalex.org/W3010674559, https://openalex.org/W2100106837, https://openalex.org/W3038804008, https://openalex.org/W2903293690, https://openalex.org/W3137139376, https://openalex.org/W3024034875, https://openalex.org/W2348336253, https://openalex.org/W627107180, https://openalex.org/W4226318388, https://openalex.org/W3099545566, https://openalex.org/W3100575704, https://openalex.org/W3015056889, https://openalex.org/W1722683538 |
| referenced_works_count | 66 |
| abstract_inverted_index.a | 92, 143, 203, 211 |
| abstract_inverted_index.In | 20, 94, 152 |
| abstract_inverted_index.as | 66, 109 |
| abstract_inverted_index.be | 131, 178 |
| abstract_inverted_index.by | 101 |
| abstract_inverted_index.in | 114, 121, 133 |
| abstract_inverted_index.is | 10, 50, 190 |
| abstract_inverted_index.it | 49 |
| abstract_inverted_index.of | 7, 17, 46, 71, 105, 118, 183, 195, 217 |
| abstract_inverted_index.on | 79 |
| abstract_inverted_index.or | 58, 160 |
| abstract_inverted_index.so | 83 |
| abstract_inverted_index.to | 12, 37, 61, 73, 192 |
| abstract_inverted_index.we | 97, 155 |
| abstract_inverted_index.EWS | 89, 129, 176, 218 |
| abstract_inverted_index.Our | 124, 199 |
| abstract_inverted_index.and | 4, 42, 69, 112, 149, 207 |
| abstract_inverted_index.are | 55, 141 |
| abstract_inverted_index.but | 186 |
| abstract_inverted_index.can | 177 |
| abstract_inverted_index.few | 23 |
| abstract_inverted_index.for | 2, 180, 220 |
| abstract_inverted_index.may | 164 |
| abstract_inverted_index.our | 172 |
| abstract_inverted_index.set | 45 |
| abstract_inverted_index.the | 21, 44, 103, 116, 147, 166, 196, 215 |
| abstract_inverted_index.EWS, | 107 |
| abstract_inverted_index.been | 35, 85 |
| abstract_inverted_index.data | 81 |
| abstract_inverted_index.far, | 84 |
| abstract_inverted_index.from | 30 |
| abstract_inverted_index.has, | 82 |
| abstract_inverted_index.have | 34 |
| abstract_inverted_index.past | 22 |
| abstract_inverted_index.pave | 202 |
| abstract_inverted_index.risk | 15 |
| abstract_inverted_index.slow | 144 |
| abstract_inverted_index.some | 62, 138 |
| abstract_inverted_index.step | 213 |
| abstract_inverted_index.such | 65, 108 |
| abstract_inverted_index.that | 127, 157, 175, 187 |
| abstract_inverted_index.they | 54 |
| abstract_inverted_index.this | 95, 99 |
| abstract_inverted_index.thus | 201 |
| abstract_inverted_index.time | 162 |
| abstract_inverted_index.when | 137 |
| abstract_inverted_index.work | 125 |
| abstract_inverted_index.(EWS) | 29 |
| abstract_inverted_index.basic | 139 |
| abstract_inverted_index.early | 5, 26, 168 |
| abstract_inverted_index.might | 130 |
| abstract_inverted_index.noise | 68, 158 |
| abstract_inverted_index.rapid | 3 |
| abstract_inverted_index.rates | 70 |
| abstract_inverted_index.still | 51 |
| abstract_inverted_index.their | 188 |
| abstract_inverted_index.these | 128 |
| abstract_inverted_index.Hence, | 87 |
| abstract_inverted_index.active | 181 |
| abstract_inverted_index.cases, | 154 |
| abstract_inverted_index.common | 106 |
| abstract_inverted_index.detect | 38 |
| abstract_inverted_index.extend | 43 |
| abstract_inverted_index.health | 223 |
| abstract_inverted_index.noise. | 151 |
| abstract_inverted_index.public | 222 |
| abstract_inverted_index.scales | 163 |
| abstract_inverted_index.study, | 96 |
| abstract_inverted_index.system | 67 |
| abstract_inverted_index.tackle | 98 |
| abstract_inverted_index.theory | 33 |
| abstract_inverted_index.useful | 179 |
| abstract_inverted_index.years, | 24 |
| abstract_inverted_index.between | 205 |
| abstract_inverted_index.certain | 193 |
| abstract_inverted_index.complex | 31 |
| abstract_inverted_index.debated | 52 |
| abstract_inverted_index.disease | 8, 135 |
| abstract_inverted_index.forcing | 145 |
| abstract_inverted_index.further | 212 |
| abstract_inverted_index.obscure | 165 |
| abstract_inverted_index.observe | 156 |
| abstract_inverted_index.perform | 13 |
| abstract_inverted_index.remains | 91 |
| abstract_inverted_index.results | 173 |
| abstract_inverted_index.several | 25 |
| abstract_inverted_index.signals | 28 |
| abstract_inverted_index.suggest | 174 |
| abstract_inverted_index.systems | 32 |
| abstract_inverted_index.testing | 78 |
| abstract_inverted_index.through | 146 |
| abstract_inverted_index.towards | 214 |
| abstract_inverted_index.values. | 76 |
| abstract_inverted_index.various | 122 |
| abstract_inverted_index.warning | 27, 169 |
| abstract_inverted_index.whether | 53 |
| abstract_inverted_index.COVID-19 | 119 |
| abstract_inverted_index.However, | 48 |
| abstract_inverted_index.Overall, | 171 |
| abstract_inverted_index.approach | 72 |
| abstract_inverted_index.critical | 40, 74 |
| abstract_inverted_index.epidemic | 18, 184 |
| abstract_inverted_index.expected | 167 |
| abstract_inverted_index.features | 194 |
| abstract_inverted_index.findings | 200 |
| abstract_inverted_index.limited. | 86 |
| abstract_inverted_index.measures | 1 |
| abstract_inverted_index.question | 100 |
| abstract_inverted_index.signals. | 170 |
| abstract_inverted_index.studies, | 209 |
| abstract_inverted_index.threats. | 19 |
| abstract_inverted_index.variance | 111 |
| abstract_inverted_index.Moreover, | 77 |
| abstract_inverted_index.analyzing | 102 |
| abstract_inverted_index.detecting | 115, 134 |
| abstract_inverted_index.detection | 6 |
| abstract_inverted_index.dynamical | 63 |
| abstract_inverted_index.dynamics, | 185 |
| abstract_inverted_index.dynamics. | 198 |
| abstract_inverted_index.emergence | 117, 136 |
| abstract_inverted_index.empirical | 80, 208 |
| abstract_inverted_index.impending | 39 |
| abstract_inverted_index.important | 11 |
| abstract_inverted_index.informing | 221 |
| abstract_inverted_index.outbreaks | 120 |
| abstract_inverted_index.parameter | 75 |
| abstract_inverted_index.policies. | 224 |
| abstract_inverted_index.sensitive | 60, 191 |
| abstract_inverted_index.uncertain | 153 |
| abstract_inverted_index.verifying | 88 |
| abstract_inverted_index.Developing | 0 |
| abstract_inverted_index.applicable | 57 |
| abstract_inverted_index.assessment | 16 |
| abstract_inverted_index.challenge. | 93 |
| abstract_inverted_index.connection | 204 |
| abstract_inverted_index.countries. | 123 |
| abstract_inverted_index.increasing | 110 |
| abstract_inverted_index.indicators | 219 |
| abstract_inverted_index.introduced | 36 |
| abstract_inverted_index.monitoring | 182 |
| abstract_inverted_index.properties | 159 |
| abstract_inverted_index.satisfied: | 142 |
| abstract_inverted_index.successful | 132 |
| abstract_inverted_index.underlying | 197 |
| abstract_inverted_index.application | 216 |
| abstract_inverted_index.assumptions | 140 |
| abstract_inverted_index.generically | 56 |
| abstract_inverted_index.illustrates | 126 |
| abstract_inverted_index.indicators. | 47 |
| abstract_inverted_index.performance | 90, 104, 189 |
| abstract_inverted_index.potentially | 59 |
| abstract_inverted_index.theoretical | 206 |
| abstract_inverted_index.transitions | 41, 148 |
| abstract_inverted_index.constituting | 210 |
| abstract_inverted_index.re-emergence | 9 |
| abstract_inverted_index.commensurable | 161 |
| abstract_inverted_index.science-based | 14 |
| abstract_inverted_index.not-fat-tailed | 150 |
| abstract_inverted_index.characteristics | 64 |
| abstract_inverted_index.autocorrelation, | 113 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5035877557, https://openalex.org/A5091254699, https://openalex.org/A5089094325, https://openalex.org/A5037164344 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I186903577, https://openalex.org/I23923803, https://openalex.org/I241749 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.93898749 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |