Performance of Natural Language Processing versus International Classification of Diseases Codes in Building Registries for Patients With Fall Injury: Retrospective Analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2196/66973
Background Standardized registries, such as the International Classification of Diseases ( ICD ) codes, are commonly built using administrative codes assigned to patient encounters. However, patients with fall injury are often coded using subsequent injury codes, such as hip fractures. This necessitates manual screening to ensure the accuracy of data registries. Objective This study aimed to automate the extraction of fall incidents and mechanisms using natural language processing (NLP) and compare this approach with the ICD method. Methods Clinical notes for patients with fall-induced hip fractures were retrospectively reviewed by medical experts. Fall incidences were detected, annotated, and classified among patients who had a fall-induced hip fracture (case group). The control group included patients with hip fractures without any evidence of falls. NLP models were developed using the annotated notes of the study groups to fulfill two separate tasks: fall occurrence detection and fall mechanism classification. The performances of the models were compared using accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F 1 -score, and area under the receiver operating characteristic curve. Results A total of 1769 clinical notes were included in the final analysis for the fall occurrence task, and 783 clinical notes were analyzed for the fall mechanism classification task. The highest F 1 -score using NLP for fall occurrence was 0.97 (specificity=0.96; sensitivity=0.97), and for fall mechanism classification was 0.61 (specificity=0.56; sensitivity=0.62). Natural language processing could detect up to 98% of the fall occurrences and 65% of the fall mechanisms accurately, compared to 26% and 12%, respectively, by ICD codes. Conclusions Our findings showed promising performance with higher accuracy of NLP algorithms compared to the conventional method for detecting fall occurrence and mechanism in developing disease registries using clinical notes. Our approach can be introduced to other registries that are based on large data and are in need of accurate annotation and classification.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2196/66973
- OA Status
- gold
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407827690
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407827690Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2196/66973Digital Object Identifier
- Title
-
Performance of Natural Language Processing versus International Classification of Diseases Codes in Building Registries for Patients With Fall Injury: Retrospective AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-21Full publication date if available
- Authors
-
Atta Taseh, Souri Sasanfar, M. Chan, Evan Sirls, Ara Nazarian, Kayhan Batmanghelich, Jonathan F. Bean, Soheil Ashkani‐EsfahaniList of authors in order
- Landing page
-
https://doi.org/10.2196/66973Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2196/66973Direct OA link when available
- Concepts
-
Preprint, Computer science, Algorithm, Artificial intelligence, Natural language processing, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407827690 |
|---|---|
| doi | https://doi.org/10.2196/66973 |
| ids.doi | https://doi.org/10.2196/66973 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40658984 |
| ids.openalex | https://openalex.org/W4407827690 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D009323 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Natural Language Processing |
| mesh[2].qualifier_ui | Q000706 |
| mesh[2].descriptor_ui | D000058 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | statistics & numerical data |
| mesh[2].descriptor_name | Accidental Falls |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D012189 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Retrospective Studies |
| mesh[4].qualifier_ui | Q000592 |
| mesh[4].descriptor_ui | D038801 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | standards |
| mesh[4].descriptor_name | International Classification of Diseases |
| mesh[5].qualifier_ui | Q000706 |
| mesh[5].descriptor_ui | D012042 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | statistics & numerical data |
| mesh[5].descriptor_name | Registries |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D005260 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Female |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D008297 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Male |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000368 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Aged |
| mesh[9].qualifier_ui | Q000453 |
| mesh[9].descriptor_ui | D006620 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | epidemiology |
| mesh[9].descriptor_name | Hip Fractures |
| mesh[10].qualifier_ui | Q000209 |
| mesh[10].descriptor_ui | D006620 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | etiology |
| mesh[10].descriptor_name | Hip Fractures |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000369 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Aged, 80 and over |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D009323 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Natural Language Processing |
| mesh[14].qualifier_ui | Q000706 |
| mesh[14].descriptor_ui | D000058 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | statistics & numerical data |
| mesh[14].descriptor_name | Accidental Falls |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D012189 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Retrospective Studies |
| mesh[16].qualifier_ui | Q000592 |
| mesh[16].descriptor_ui | D038801 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | standards |
| mesh[16].descriptor_name | International Classification of Diseases |
| mesh[17].qualifier_ui | Q000706 |
| mesh[17].descriptor_ui | D012042 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | statistics & numerical data |
| mesh[17].descriptor_name | Registries |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D005260 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Female |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D008297 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Male |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D000368 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Aged |
| mesh[21].qualifier_ui | Q000453 |
| mesh[21].descriptor_ui | D006620 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | epidemiology |
| mesh[21].descriptor_name | Hip Fractures |
| mesh[22].qualifier_ui | Q000209 |
| mesh[22].descriptor_ui | D006620 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | etiology |
| mesh[22].descriptor_name | Hip Fractures |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D000369 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Aged, 80 and over |
| type | article |
| title | Performance of Natural Language Processing versus International Classification of Diseases Codes in Building Registries for Patients With Fall Injury: Retrospective Analysis |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | e66973 |
| biblio.first_page | e66973 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9761000275611877 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T11396 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9746999740600586 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Artificial Intelligence in Healthcare |
| topics[2].id | https://openalex.org/T14400 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9702000021934509 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3605 |
| topics[2].subfield.display_name | Health Information Management |
| topics[2].display_name | Medical Coding and Health Information |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | USD |
| apc_list.value_usd | 2300 |
| apc_paid.value | 2300 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2300 |
| concepts[0].id | https://openalex.org/C43169469 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8753597736358643 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q580922 |
| concepts[0].display_name | Preprint |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6148216128349304 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4505603015422821 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3537205159664154 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3393141031265259 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C136764020 |
| concepts[5].level | 1 |
| concepts[5].score | 0.13755980134010315 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[5].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/preprint |
| keywords[0].score | 0.8753597736358643 |
| keywords[0].display_name | Preprint |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6148216128349304 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.4505603015422821 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3537205159664154 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/natural-language-processing |
| keywords[4].score | 0.3393141031265259 |
| keywords[4].display_name | Natural language processing |
| keywords[5].id | https://openalex.org/keywords/world-wide-web |
| keywords[5].score | 0.13755980134010315 |
| keywords[5].display_name | World Wide Web |
| language | en |
| locations[0].id | doi:10.2196/66973 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764650051 |
| locations[0].source.issn | 2291-9694 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2291-9694 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | JMIR Medical Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310320608 |
| locations[0].source.host_organization_name | JMIR Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320608 |
| locations[0].source.host_organization_lineage_names | JMIR Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | JMIR Medical Informatics |
| locations[0].landing_page_url | https://doi.org/10.2196/66973 |
| locations[1].id | pmid:40658984 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | JMIR medical informatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40658984 |
| locations[2].id | pmh:oai:doaj.org/article:fbe1d43a3df74e1ea225c57166c09297 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | JMIR Medical Informatics, Vol 13, Pp e66973-e66973 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/fbe1d43a3df74e1ea225c57166c09297 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12279314 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | JMIR Med Inform |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12279314 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5046386459 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7485-1500 |
| authorships[0].author.display_name | Atta Taseh |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I136199984, https://openalex.org/I48633490 |
| authorships[0].affiliations[0].raw_affiliation_string | Foot & Ankle Research and Innovations Laboratory (FARIL), Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, 158 Boston Post Road, Weston, MA, 02493, United States, 1 7818279613. |
| authorships[0].institutions[0].id | https://openalex.org/I136199984 |
| authorships[0].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Harvard University |
| authorships[0].institutions[1].id | https://openalex.org/I48633490 |
| authorships[0].institutions[1].ror | https://ror.org/04py2rh25 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I48633490 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Mass General Brigham |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Atta Taseh |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Foot & Ankle Research and Innovations Laboratory (FARIL), Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, 158 Boston Post Road, Weston, MA, 02493, United States, 1 7818279613. |
| authorships[1].author.id | https://openalex.org/A5107648020 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Souri Sasanfar |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I136199984, https://openalex.org/I48633490 |
| authorships[1].affiliations[0].raw_affiliation_string | Foot & Ankle Research and Innovations Laboratory (FARIL), Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, 158 Boston Post Road, Weston, MA, 02493, United States, 1 7818279613. |
| authorships[1].institutions[0].id | https://openalex.org/I136199984 |
| authorships[1].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Harvard University |
| authorships[1].institutions[1].id | https://openalex.org/I48633490 |
| authorships[1].institutions[1].ror | https://ror.org/04py2rh25 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I48633490 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Mass General Brigham |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Souri Sasanfar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Foot & Ankle Research and Innovations Laboratory (FARIL), Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, 158 Boston Post Road, Weston, MA, 02493, United States, 1 7818279613. |
| authorships[2].author.id | https://openalex.org/A5103020905 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | M. Chan |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I136199984, https://openalex.org/I48633490 |
| authorships[2].affiliations[0].raw_affiliation_string | Foot & Ankle Research and Innovations Laboratory (FARIL), Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, 158 Boston Post Road, Weston, MA, 02493, United States, 1 7818279613. |
| authorships[2].institutions[0].id | https://openalex.org/I136199984 |
| authorships[2].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Harvard University |
| authorships[2].institutions[1].id | https://openalex.org/I48633490 |
| authorships[2].institutions[1].ror | https://ror.org/04py2rh25 |
| authorships[2].institutions[1].type | healthcare |
| authorships[2].institutions[1].lineage | https://openalex.org/I48633490 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | Mass General Brigham |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Michelle Chan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Foot & Ankle Research and Innovations Laboratory (FARIL), Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, 158 Boston Post Road, Weston, MA, 02493, United States, 1 7818279613. |
| authorships[3].author.id | https://openalex.org/A5107624383 |
| authorships[3].author.orcid | https://orcid.org/0009-0002-5037-0061 |
| authorships[3].author.display_name | Evan Sirls |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I136199984, https://openalex.org/I48633490 |
| authorships[3].affiliations[0].raw_affiliation_string | Foot & Ankle Research and Innovations Laboratory (FARIL), Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, 158 Boston Post Road, Weston, MA, 02493, United States, 1 7818279613. |
| authorships[3].institutions[0].id | https://openalex.org/I136199984 |
| authorships[3].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Harvard University |
| authorships[3].institutions[1].id | https://openalex.org/I48633490 |
| authorships[3].institutions[1].ror | https://ror.org/04py2rh25 |
| authorships[3].institutions[1].type | healthcare |
| authorships[3].institutions[1].lineage | https://openalex.org/I48633490 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | Mass General Brigham |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Evan Sirls |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Foot & Ankle Research and Innovations Laboratory (FARIL), Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, 158 Boston Post Road, Weston, MA, 02493, United States, 1 7818279613. |
| authorships[4].author.id | https://openalex.org/A5050680057 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3992-3489 |
| authorships[4].author.display_name | Ara Nazarian |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1316535847, https://openalex.org/I136199984 |
| authorships[4].affiliations[0].raw_affiliation_string | Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States. |
| authorships[4].institutions[0].id | https://openalex.org/I1316535847 |
| authorships[4].institutions[0].ror | https://ror.org/04drvxt59 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I1316535847 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Beth Israel Deaconess Medical Center |
| authorships[4].institutions[1].id | https://openalex.org/I136199984 |
| authorships[4].institutions[1].ror | https://ror.org/03vek6s52 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I136199984 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | Harvard University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ara Nazarian |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States. |
| authorships[5].author.id | https://openalex.org/A5031717623 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9893-9136 |
| authorships[5].author.display_name | Kayhan Batmanghelich |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I111088046 |
| authorships[5].affiliations[0].raw_affiliation_string | Batman Laboratory, Department of Electrical and Computer Engineering, College of Engineering, Boston University, Boston, MA, United States. |
| authorships[5].institutions[0].id | https://openalex.org/I111088046 |
| authorships[5].institutions[0].ror | https://ror.org/05qwgg493 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I111088046 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Boston University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kayhan Batmanghelich |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Batman Laboratory, Department of Electrical and Computer Engineering, College of Engineering, Boston University, Boston, MA, United States. |
| authorships[6].author.id | https://openalex.org/A5055562797 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8385-8210 |
| authorships[6].author.display_name | Jonathan F. Bean |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I2799748957 |
| authorships[6].affiliations[0].raw_affiliation_string | Spaulding Rehabilitation, Boston, MA, United States. |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I136199984 |
| authorships[6].affiliations[1].raw_affiliation_string | Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States. |
| authorships[6].affiliations[2].institution_ids | https://openalex.org/I4210110523 |
| authorships[6].affiliations[2].raw_affiliation_string | New England Geriatric Research Education and Clinical Center (GRECC), Veterans Affair Boston Healthcare System, Boston, MA, United States. |
| authorships[6].institutions[0].id | https://openalex.org/I4210110523 |
| authorships[6].institutions[0].ror | https://ror.org/01nh3sx96 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I1322918889, https://openalex.org/I2799886695, https://openalex.org/I4210110523, https://openalex.org/I4210133905, https://openalex.org/I4210147340 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Geriatric Research Education and Clinical Center |
| authorships[6].institutions[1].id | https://openalex.org/I136199984 |
| authorships[6].institutions[1].ror | https://ror.org/03vek6s52 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I136199984 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | Harvard University |
| authorships[6].institutions[2].id | https://openalex.org/I2799748957 |
| authorships[6].institutions[2].ror | https://ror.org/011dvr318 |
| authorships[6].institutions[2].type | healthcare |
| authorships[6].institutions[2].lineage | https://openalex.org/I2799748957, https://openalex.org/I48633490 |
| authorships[6].institutions[2].country_code | US |
| authorships[6].institutions[2].display_name | Spaulding Rehabilitation Hospital |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jonathan F Bean |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States., New England Geriatric Research Education and Clinical Center (GRECC), Veterans Affair Boston Healthcare System, Boston, MA, United States., Spaulding Rehabilitation, Boston, MA, United States. |
| authorships[7].author.id | https://openalex.org/A5015159282 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-2299-6278 |
| authorships[7].author.display_name | Soheil Ashkani‐Esfahani |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I136199984, https://openalex.org/I48633490 |
| authorships[7].affiliations[0].raw_affiliation_string | Foot & Ankle Research and Innovations Laboratory (FARIL), Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, 158 Boston Post Road, Weston, MA, 02493, United States, 1 7818279613. |
| authorships[7].institutions[0].id | https://openalex.org/I136199984 |
| authorships[7].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Harvard University |
| authorships[7].institutions[1].id | https://openalex.org/I48633490 |
| authorships[7].institutions[1].ror | https://ror.org/04py2rh25 |
| authorships[7].institutions[1].type | healthcare |
| authorships[7].institutions[1].lineage | https://openalex.org/I48633490 |
| authorships[7].institutions[1].country_code | US |
| authorships[7].institutions[1].display_name | Mass General Brigham |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Soheil Ashkani-Esfahani |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Foot & Ankle Research and Innovations Laboratory (FARIL), Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, 158 Boston Post Road, Weston, MA, 02493, United States, 1 7818279613. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2196/66973 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-02-22T00:00:00 |
| display_name | Performance of Natural Language Processing versus International Classification of Diseases Codes in Building Registries for Patients With Fall Injury: Retrospective Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9761000275611877 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4229365511, https://openalex.org/W3131332557, https://openalex.org/W4211247774, https://openalex.org/W4205871143, https://openalex.org/W3045462960, https://openalex.org/W4393774512, https://openalex.org/W3204019825 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.2196/66973 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764650051 |
| best_oa_location.source.issn | 2291-9694 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2291-9694 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | JMIR Medical Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320608 |
| best_oa_location.source.host_organization_name | JMIR Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320608 |
| best_oa_location.source.host_organization_lineage_names | JMIR Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | JMIR Medical Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.2196/66973 |
| primary_location.id | doi:10.2196/66973 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764650051 |
| primary_location.source.issn | 2291-9694 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2291-9694 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | JMIR Medical Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310320608 |
| primary_location.source.host_organization_name | JMIR Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320608 |
| primary_location.source.host_organization_lineage_names | JMIR Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | JMIR Medical Informatics |
| primary_location.landing_page_url | https://doi.org/10.2196/66973 |
| publication_date | 2025-02-21 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2521242676, https://openalex.org/W3041395126, https://openalex.org/W2791636814, https://openalex.org/W2725142067, https://openalex.org/W2219591537, https://openalex.org/W2793970512, https://openalex.org/W3012344650, https://openalex.org/W2544090416, https://openalex.org/W2011833769, https://openalex.org/W2004910511, https://openalex.org/W2129205398, https://openalex.org/W2400968868, https://openalex.org/W2962766399, https://openalex.org/W2461264157, https://openalex.org/W4221109207, https://openalex.org/W2019043356, https://openalex.org/W2331491898, https://openalex.org/W2147661848, https://openalex.org/W4309791331, https://openalex.org/W296069425, https://openalex.org/W3160709615, https://openalex.org/W2963341956, https://openalex.org/W4236137412, https://openalex.org/W1988790447, https://openalex.org/W2319270064, https://openalex.org/W2295598076, https://openalex.org/W2891157358, https://openalex.org/W2606665849, https://openalex.org/W2799913286, https://openalex.org/W2028558436, https://openalex.org/W3095009811, https://openalex.org/W2906484232, https://openalex.org/W3000817905, https://openalex.org/W2036543108, https://openalex.org/W2341399937, https://openalex.org/W4390148007, https://openalex.org/W2095600590, https://openalex.org/W2999259596, https://openalex.org/W4307786366, https://openalex.org/W3189545131, https://openalex.org/W2020525447, https://openalex.org/W2055310555, https://openalex.org/W4306803407, https://openalex.org/W4378472501 |
| referenced_works_count | 44 |
| abstract_inverted_index.( | 11 |
| abstract_inverted_index.) | 13 |
| abstract_inverted_index.1 | 165, 208 |
| abstract_inverted_index.A | 176 |
| abstract_inverted_index.F | 164, 207 |
| abstract_inverted_index.a | 104 |
| abstract_inverted_index.as | 5, 38 |
| abstract_inverted_index.be | 289 |
| abstract_inverted_index.by | 90, 253 |
| abstract_inverted_index.in | 184, 279, 302 |
| abstract_inverted_index.of | 9, 49, 60, 121, 131, 149, 178, 236, 242, 265, 304 |
| abstract_inverted_index.on | 297 |
| abstract_inverted_index.to | 22, 45, 56, 135, 234, 248, 269, 291 |
| abstract_inverted_index.up | 233 |
| abstract_inverted_index.26% | 249 |
| abstract_inverted_index.65% | 241 |
| abstract_inverted_index.783 | 194 |
| abstract_inverted_index.98% | 235 |
| abstract_inverted_index.ICD | 12, 76, 254 |
| abstract_inverted_index.NLP | 123, 211, 266 |
| abstract_inverted_index.Our | 257, 286 |
| abstract_inverted_index.The | 110, 147, 205 |
| abstract_inverted_index.and | 63, 70, 98, 143, 167, 193, 219, 240, 250, 277, 300, 307 |
| abstract_inverted_index.any | 119 |
| abstract_inverted_index.are | 15, 30, 295, 301 |
| abstract_inverted_index.can | 288 |
| abstract_inverted_index.for | 81, 188, 199, 212, 220, 273 |
| abstract_inverted_index.had | 103 |
| abstract_inverted_index.hip | 39, 85, 106, 116 |
| abstract_inverted_index.the | 6, 47, 58, 75, 128, 132, 150, 170, 185, 189, 200, 237, 243, 270 |
| abstract_inverted_index.two | 137 |
| abstract_inverted_index.was | 215, 224 |
| abstract_inverted_index.who | 102 |
| abstract_inverted_index.0.61 | 225 |
| abstract_inverted_index.0.97 | 216 |
| abstract_inverted_index.12%, | 251 |
| abstract_inverted_index.1769 | 179 |
| abstract_inverted_index.Fall | 93 |
| abstract_inverted_index.This | 41, 53 |
| abstract_inverted_index.area | 168 |
| abstract_inverted_index.data | 50, 299 |
| abstract_inverted_index.fall | 28, 61, 140, 144, 190, 201, 213, 221, 238, 244, 275 |
| abstract_inverted_index.need | 303 |
| abstract_inverted_index.such | 4, 37 |
| abstract_inverted_index.that | 294 |
| abstract_inverted_index.this | 72 |
| abstract_inverted_index.were | 87, 95, 125, 152, 182, 197 |
| abstract_inverted_index.with | 27, 74, 83, 115, 262 |
| abstract_inverted_index.(NLP) | 69 |
| abstract_inverted_index.(case | 108 |
| abstract_inverted_index.aimed | 55 |
| abstract_inverted_index.among | 100 |
| abstract_inverted_index.based | 296 |
| abstract_inverted_index.built | 17 |
| abstract_inverted_index.coded | 32 |
| abstract_inverted_index.codes | 20 |
| abstract_inverted_index.could | 231 |
| abstract_inverted_index.final | 186 |
| abstract_inverted_index.group | 112 |
| abstract_inverted_index.large | 298 |
| abstract_inverted_index.notes | 80, 130, 181, 196 |
| abstract_inverted_index.often | 31 |
| abstract_inverted_index.other | 292 |
| abstract_inverted_index.study | 54, 133 |
| abstract_inverted_index.task, | 192 |
| abstract_inverted_index.task. | 204 |
| abstract_inverted_index.total | 177 |
| abstract_inverted_index.under | 169 |
| abstract_inverted_index.using | 18, 33, 65, 127, 154, 210, 283 |
| abstract_inverted_index.-score | 209 |
| abstract_inverted_index.codes, | 14, 36 |
| abstract_inverted_index.codes. | 255 |
| abstract_inverted_index.curve. | 174 |
| abstract_inverted_index.detect | 232 |
| abstract_inverted_index.ensure | 46 |
| abstract_inverted_index.falls. | 122 |
| abstract_inverted_index.groups | 134 |
| abstract_inverted_index.higher | 263 |
| abstract_inverted_index.injury | 29, 35 |
| abstract_inverted_index.manual | 43 |
| abstract_inverted_index.method | 272 |
| abstract_inverted_index.models | 124, 151 |
| abstract_inverted_index.notes. | 285 |
| abstract_inverted_index.showed | 259 |
| abstract_inverted_index.tasks: | 139 |
| abstract_inverted_index.value, | 160, 163 |
| abstract_inverted_index.-score, | 166 |
| abstract_inverted_index.Methods | 78 |
| abstract_inverted_index.Natural | 228 |
| abstract_inverted_index.Results | 175 |
| abstract_inverted_index.compare | 71 |
| abstract_inverted_index.control | 111 |
| abstract_inverted_index.disease | 281 |
| abstract_inverted_index.fulfill | 136 |
| abstract_inverted_index.group). | 109 |
| abstract_inverted_index.highest | 206 |
| abstract_inverted_index.medical | 91 |
| abstract_inverted_index.method. | 77 |
| abstract_inverted_index.natural | 66 |
| abstract_inverted_index.patient | 23 |
| abstract_inverted_index.without | 118 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Clinical | 79 |
| abstract_inverted_index.Diseases | 10 |
| abstract_inverted_index.However, | 25 |
| abstract_inverted_index.accuracy | 48, 264 |
| abstract_inverted_index.accurate | 305 |
| abstract_inverted_index.analysis | 187 |
| abstract_inverted_index.analyzed | 198 |
| abstract_inverted_index.approach | 73, 287 |
| abstract_inverted_index.assigned | 21 |
| abstract_inverted_index.automate | 57 |
| abstract_inverted_index.clinical | 180, 195, 284 |
| abstract_inverted_index.commonly | 16 |
| abstract_inverted_index.compared | 153, 247, 268 |
| abstract_inverted_index.evidence | 120 |
| abstract_inverted_index.experts. | 92 |
| abstract_inverted_index.findings | 258 |
| abstract_inverted_index.fracture | 107 |
| abstract_inverted_index.included | 113, 183 |
| abstract_inverted_index.language | 67, 229 |
| abstract_inverted_index.negative | 161 |
| abstract_inverted_index.patients | 26, 82, 101, 114 |
| abstract_inverted_index.positive | 158 |
| abstract_inverted_index.receiver | 171 |
| abstract_inverted_index.reviewed | 89 |
| abstract_inverted_index.separate | 138 |
| abstract_inverted_index.Objective | 52 |
| abstract_inverted_index.accuracy, | 155 |
| abstract_inverted_index.annotated | 129 |
| abstract_inverted_index.detected, | 96 |
| abstract_inverted_index.detecting | 274 |
| abstract_inverted_index.detection | 142 |
| abstract_inverted_index.developed | 126 |
| abstract_inverted_index.fractures | 86, 117 |
| abstract_inverted_index.incidents | 62 |
| abstract_inverted_index.mechanism | 145, 202, 222, 278 |
| abstract_inverted_index.operating | 172 |
| abstract_inverted_index.promising | 260 |
| abstract_inverted_index.screening | 44 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.algorithms | 267 |
| abstract_inverted_index.annotated, | 97 |
| abstract_inverted_index.annotation | 306 |
| abstract_inverted_index.classified | 99 |
| abstract_inverted_index.developing | 280 |
| abstract_inverted_index.extraction | 59 |
| abstract_inverted_index.fractures. | 40 |
| abstract_inverted_index.incidences | 94 |
| abstract_inverted_index.introduced | 290 |
| abstract_inverted_index.mechanisms | 64, 245 |
| abstract_inverted_index.occurrence | 141, 191, 214, 276 |
| abstract_inverted_index.predictive | 159, 162 |
| abstract_inverted_index.processing | 68, 230 |
| abstract_inverted_index.registries | 282, 293 |
| abstract_inverted_index.subsequent | 34 |
| abstract_inverted_index.Conclusions | 256 |
| abstract_inverted_index.accurately, | 246 |
| abstract_inverted_index.encounters. | 24 |
| abstract_inverted_index.occurrences | 239 |
| abstract_inverted_index.performance | 261 |
| abstract_inverted_index.registries, | 3 |
| abstract_inverted_index.registries. | 51 |
| abstract_inverted_index.Standardized | 2 |
| abstract_inverted_index.conventional | 271 |
| abstract_inverted_index.fall-induced | 84, 105 |
| abstract_inverted_index.necessitates | 42 |
| abstract_inverted_index.performances | 148 |
| abstract_inverted_index.sensitivity, | 156 |
| abstract_inverted_index.specificity, | 157 |
| abstract_inverted_index.International | 7 |
| abstract_inverted_index.respectively, | 252 |
| abstract_inverted_index.Classification | 8 |
| abstract_inverted_index.administrative | 19 |
| abstract_inverted_index.characteristic | 173 |
| abstract_inverted_index.classification | 203, 223 |
| abstract_inverted_index.classification. | 146, 308 |
| abstract_inverted_index.retrospectively | 88 |
| abstract_inverted_index.(specificity=0.56; | 226 |
| abstract_inverted_index.(specificity=0.96; | 217 |
| abstract_inverted_index.sensitivity=0.62). | 227 |
| abstract_inverted_index.sensitivity=0.97), | 218 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.01929137 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |