Persistent Classification: A New Approach to Stability of Data and Adversarial Examples Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2404.08069
There are a number of hypotheses underlying the existence of adversarial examples for classification problems. These include the high-dimensionality of the data, high codimension in the ambient space of the data manifolds of interest, and that the structure of machine learning models may encourage classifiers to develop decision boundaries close to data points. This article proposes a new framework for studying adversarial examples that does not depend directly on the distance to the decision boundary. Similarly to the smoothed classifier literature, we define a (natural or adversarial) data point to be $(γ,σ)$-stable if the probability of the same classification is at least $γ$ for points sampled in a Gaussian neighborhood of the point with a given standard deviation $σ$. We focus on studying the differences between persistence metrics along interpolants of natural and adversarial points. We show that adversarial examples have significantly lower persistence than natural examples for large neural networks in the context of the MNIST and ImageNet datasets. We connect this lack of persistence with decision boundary geometry by measuring angles of interpolants with respect to decision boundaries. Finally, we connect this approach with robustness by developing a manifold alignment gradient metric and demonstrating the increase in robustness that can be achieved when training with the addition of this metric.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2404.08069
- https://arxiv.org/pdf/2404.08069
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394838720
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394838720Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2404.08069Digital Object Identifier
- Title
-
Persistent Classification: A New Approach to Stability of Data and Adversarial ExamplesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-11Full publication date if available
- Authors
-
Brian Bell, Michaël Geyer, David Glickenstein, Keaton Hamm, Carlos Scheidegger, Amanda Fernandez, Juston MooreList of authors in order
- Landing page
-
https://arxiv.org/abs/2404.08069Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2404.08069Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2404.08069Direct OA link when available
- Concepts
-
Adversarial system, Stability (learning theory), Computer science, Artificial intelligence, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394838720 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2404.08069 |
| ids.doi | https://doi.org/10.48550/arxiv.2404.08069 |
| ids.openalex | https://openalex.org/W4394838720 |
| fwci | |
| type | preprint |
| title | Persistent Classification: A New Approach to Stability of Data and Adversarial Examples |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9861000180244446 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C37736160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8917567729949951 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[0].display_name | Adversarial system |
| concepts[1].id | https://openalex.org/C112972136 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6427765488624573 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[1].display_name | Stability (learning theory) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.47121065855026245 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3822711706161499 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3220454454421997 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/adversarial-system |
| keywords[0].score | 0.8917567729949951 |
| keywords[0].display_name | Adversarial system |
| keywords[1].id | https://openalex.org/keywords/stability |
| keywords[1].score | 0.6427765488624573 |
| keywords[1].display_name | Stability (learning theory) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.47121065855026245 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3822711706161499 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3220454454421997 |
| keywords[4].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2404.08069 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2404.08069 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2404.08069 |
| locations[1].id | doi:10.48550/arxiv.2404.08069 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2404.08069 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5047592199 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8577-7430 |
| authorships[0].author.display_name | Brian Bell |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bell, Brian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5013291349 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0085-2521 |
| authorships[1].author.display_name | Michaël Geyer |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Geyer, Michael |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5039063170 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9238-0973 |
| authorships[2].author.display_name | David Glickenstein |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Glickenstein, David |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5064380948 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0719-6045 |
| authorships[3].author.display_name | Keaton Hamm |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hamm, Keaton |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5035997603 |
| authorships[4].author.orcid | https://orcid.org/0009-0006-9163-6136 |
| authorships[4].author.display_name | Carlos Scheidegger |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Scheidegger, Carlos |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5019279166 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2397-0838 |
| authorships[5].author.display_name | Amanda Fernandez |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Fernandez, Amanda |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5009409937 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2515-3647 |
| authorships[6].author.display_name | Juston Moore |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Moore, Juston |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2404.08069 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Persistent Classification: A New Approach to Stability of Data and Adversarial Examples |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9861000180244446 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347, https://openalex.org/W4210805261 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2404.08069 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2404.08069 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2404.08069 |
| primary_location.id | pmh:oai:arXiv.org:2404.08069 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2404.08069 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2404.08069 |
| publication_date | 2024-04-11 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 56, 83, 107, 114, 189 |
| abstract_inverted_index.We | 119, 135, 160 |
| abstract_inverted_index.at | 100 |
| abstract_inverted_index.be | 90, 202 |
| abstract_inverted_index.by | 170, 187 |
| abstract_inverted_index.if | 92 |
| abstract_inverted_index.in | 24, 106, 151, 198 |
| abstract_inverted_index.is | 99 |
| abstract_inverted_index.of | 4, 9, 19, 28, 32, 38, 95, 110, 130, 154, 164, 173, 209 |
| abstract_inverted_index.on | 68, 121 |
| abstract_inverted_index.or | 85 |
| abstract_inverted_index.to | 45, 50, 71, 76, 89, 177 |
| abstract_inverted_index.we | 81, 181 |
| abstract_inverted_index.and | 34, 132, 157, 194 |
| abstract_inverted_index.are | 1 |
| abstract_inverted_index.can | 201 |
| abstract_inverted_index.for | 12, 59, 103, 147 |
| abstract_inverted_index.may | 42 |
| abstract_inverted_index.new | 57 |
| abstract_inverted_index.not | 65 |
| abstract_inverted_index.the | 7, 17, 20, 25, 29, 36, 69, 72, 77, 93, 96, 111, 123, 152, 155, 196, 207 |
| abstract_inverted_index.$γ$ | 102 |
| abstract_inverted_index.This | 53 |
| abstract_inverted_index.data | 30, 51, 87 |
| abstract_inverted_index.does | 64 |
| abstract_inverted_index.have | 140 |
| abstract_inverted_index.high | 22 |
| abstract_inverted_index.lack | 163 |
| abstract_inverted_index.same | 97 |
| abstract_inverted_index.show | 136 |
| abstract_inverted_index.than | 144 |
| abstract_inverted_index.that | 35, 63, 137, 200 |
| abstract_inverted_index.this | 162, 183, 210 |
| abstract_inverted_index.when | 204 |
| abstract_inverted_index.with | 113, 166, 175, 185, 206 |
| abstract_inverted_index.$σ$. | 118 |
| abstract_inverted_index.MNIST | 156 |
| abstract_inverted_index.There | 0 |
| abstract_inverted_index.These | 15 |
| abstract_inverted_index.along | 128 |
| abstract_inverted_index.close | 49 |
| abstract_inverted_index.data, | 21 |
| abstract_inverted_index.focus | 120 |
| abstract_inverted_index.given | 115 |
| abstract_inverted_index.large | 148 |
| abstract_inverted_index.least | 101 |
| abstract_inverted_index.lower | 142 |
| abstract_inverted_index.point | 88, 112 |
| abstract_inverted_index.space | 27 |
| abstract_inverted_index.angles | 172 |
| abstract_inverted_index.define | 82 |
| abstract_inverted_index.depend | 66 |
| abstract_inverted_index.metric | 193 |
| abstract_inverted_index.models | 41 |
| abstract_inverted_index.neural | 149 |
| abstract_inverted_index.number | 3 |
| abstract_inverted_index.points | 104 |
| abstract_inverted_index.ambient | 26 |
| abstract_inverted_index.article | 54 |
| abstract_inverted_index.between | 125 |
| abstract_inverted_index.connect | 161, 182 |
| abstract_inverted_index.context | 153 |
| abstract_inverted_index.develop | 46 |
| abstract_inverted_index.include | 16 |
| abstract_inverted_index.machine | 39 |
| abstract_inverted_index.metric. | 211 |
| abstract_inverted_index.metrics | 127 |
| abstract_inverted_index.natural | 131, 145 |
| abstract_inverted_index.points. | 52, 134 |
| abstract_inverted_index.respect | 176 |
| abstract_inverted_index.sampled | 105 |
| abstract_inverted_index.(natural | 84 |
| abstract_inverted_index.Finally, | 180 |
| abstract_inverted_index.Gaussian | 108 |
| abstract_inverted_index.ImageNet | 158 |
| abstract_inverted_index.achieved | 203 |
| abstract_inverted_index.addition | 208 |
| abstract_inverted_index.approach | 184 |
| abstract_inverted_index.boundary | 168 |
| abstract_inverted_index.decision | 47, 73, 167, 178 |
| abstract_inverted_index.directly | 67 |
| abstract_inverted_index.distance | 70 |
| abstract_inverted_index.examples | 11, 62, 139, 146 |
| abstract_inverted_index.geometry | 169 |
| abstract_inverted_index.gradient | 192 |
| abstract_inverted_index.increase | 197 |
| abstract_inverted_index.learning | 40 |
| abstract_inverted_index.manifold | 190 |
| abstract_inverted_index.networks | 150 |
| abstract_inverted_index.proposes | 55 |
| abstract_inverted_index.smoothed | 78 |
| abstract_inverted_index.standard | 116 |
| abstract_inverted_index.studying | 60, 122 |
| abstract_inverted_index.training | 205 |
| abstract_inverted_index.Similarly | 75 |
| abstract_inverted_index.alignment | 191 |
| abstract_inverted_index.boundary. | 74 |
| abstract_inverted_index.datasets. | 159 |
| abstract_inverted_index.deviation | 117 |
| abstract_inverted_index.encourage | 43 |
| abstract_inverted_index.existence | 8 |
| abstract_inverted_index.framework | 58 |
| abstract_inverted_index.interest, | 33 |
| abstract_inverted_index.manifolds | 31 |
| abstract_inverted_index.measuring | 171 |
| abstract_inverted_index.problems. | 14 |
| abstract_inverted_index.structure | 37 |
| abstract_inverted_index.boundaries | 48 |
| abstract_inverted_index.classifier | 79 |
| abstract_inverted_index.developing | 188 |
| abstract_inverted_index.hypotheses | 5 |
| abstract_inverted_index.robustness | 186, 199 |
| abstract_inverted_index.underlying | 6 |
| abstract_inverted_index.adversarial | 10, 61, 133, 138 |
| abstract_inverted_index.boundaries. | 179 |
| abstract_inverted_index.classifiers | 44 |
| abstract_inverted_index.codimension | 23 |
| abstract_inverted_index.differences | 124 |
| abstract_inverted_index.literature, | 80 |
| abstract_inverted_index.persistence | 126, 143, 165 |
| abstract_inverted_index.probability | 94 |
| abstract_inverted_index.adversarial) | 86 |
| abstract_inverted_index.interpolants | 129, 174 |
| abstract_inverted_index.neighborhood | 109 |
| abstract_inverted_index.demonstrating | 195 |
| abstract_inverted_index.significantly | 141 |
| abstract_inverted_index.classification | 13, 98 |
| abstract_inverted_index.$(γ,σ)$-stable | 91 |
| abstract_inverted_index.high-dimensionality | 18 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |