Person reidentification by semisupervised dictionary rectification learning with retraining module Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1117/1.jei.27.4.043043
At present, in the field of person reidentification (re-id), the commonly used supervised learning algorithms require a large amount of labeled samples, which is not conducive to the model promotion. On the other hand, the accuracy of unsupervised learning algorithms is lower than supervised algorithms due to the lack of discriminant information. To address these issues, we make use of a small amount of labeled samples to add discriminant information in the basic dictionary learning. Moreover, the sparse coefficients of dictionary learning are decomposed into a projection problem of the original features, and the projection matrix is trained by labeled samples, which is transformed into a metric learning problem. It thus integrates the advantages of the two methods through combining dictionary learning and metric learning. After the data are trained, a projection matrix is used to project the unlabeled features into a feature subspace and the labels of the samples are reconstructed. The semisupervised learning problem is then transformed to a supervised learning problem with a graph regularization term. Experiments on different public pedestrian datasets, such as VIPeR, PRID, iLIDS, and CUHK01, show that the recognition accuracy of our method is better than some other existing person re-id methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1117/1.jei.27.4.043043
- https://www.spiedigitallibrary.org/journals/journal-of-electronic-imaging/volume-27/issue-4/043043/Person-reidentification-by-semisupervised-dictionary-rectification-learning-with-retraining-module/10.1117/1.JEI.27.4.043043.pdf
- OA Status
- hybrid
- Cited By
- 3
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2886908327
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2886908327Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1117/1.jei.27.4.043043Digital Object Identifier
- Title
-
Person reidentification by semisupervised dictionary rectification learning with retraining moduleWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-08-11Full publication date if available
- Authors
-
Hongyuan Wang, Zongyuan Ding, Ji Zhang, Suolan Liu, Tongguang Ni, Fuhua ChenList of authors in order
- Landing page
-
https://doi.org/10.1117/1.jei.27.4.043043Publisher landing page
- PDF URL
-
https://www.spiedigitallibrary.org/journals/journal-of-electronic-imaging/volume-27/issue-4/043043/Person-reidentification-by-semisupervised-dictionary-rectification-learning-with-retraining-module/10.1117/1.JEI.27.4.043043.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.spiedigitallibrary.org/journals/journal-of-electronic-imaging/volume-27/issue-4/043043/Person-reidentification-by-semisupervised-dictionary-rectification-learning-with-retraining-module/10.1117/1.JEI.27.4.043043.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Semi-supervised learning, Computer science, Pattern recognition (psychology), Subspace topology, Discriminant, Machine learning, Dictionary learning, Metric (unit), Linear discriminant analysis, Supervised learning, Projection (relational algebra), Sparse approximation, Artificial neural network, Algorithm, Operations management, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2886908327 |
|---|---|
| doi | https://doi.org/10.1117/1.jei.27.4.043043 |
| ids.doi | https://doi.org/10.1117/1.jei.27.4.043043 |
| ids.mag | 2886908327 |
| ids.openalex | https://openalex.org/W2886908327 |
| fwci | 0.0 |
| type | article |
| title | Person reidentification by semisupervised dictionary rectification learning with retraining module |
| biblio.issue | 04 |
| biblio.volume | 27 |
| biblio.last_page | 1 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T12740 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9961000084877014 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Gait Recognition and Analysis |
| topics[2].id | https://openalex.org/T10812 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9934999942779541 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Human Pose and Action Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7566593885421753 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C58973888 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6380938291549683 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1041418 |
| concepts[1].display_name | Semi-supervised learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6247997879981995 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6170929074287415 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C32834561 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5940426588058472 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q660730 |
| concepts[4].display_name | Subspace topology |
| concepts[5].id | https://openalex.org/C78397625 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5497432947158813 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192487 |
| concepts[5].display_name | Discriminant |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5342812538146973 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C2988886741 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5178115963935852 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25304494 |
| concepts[7].display_name | Dictionary learning |
| concepts[8].id | https://openalex.org/C176217482 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5025887489318848 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[8].display_name | Metric (unit) |
| concepts[9].id | https://openalex.org/C69738355 |
| concepts[9].level | 2 |
| concepts[9].score | 0.47406286001205444 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1228929 |
| concepts[9].display_name | Linear discriminant analysis |
| concepts[10].id | https://openalex.org/C136389625 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4683992564678192 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[10].display_name | Supervised learning |
| concepts[11].id | https://openalex.org/C57493831 |
| concepts[11].level | 2 |
| concepts[11].score | 0.46706753969192505 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[11].display_name | Projection (relational algebra) |
| concepts[12].id | https://openalex.org/C124066611 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3305148780345917 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q28684319 |
| concepts[12].display_name | Sparse approximation |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.1300983428955078 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.08282327651977539 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C21547014 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[15].display_name | Operations management |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7566593885421753 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/semi-supervised-learning |
| keywords[1].score | 0.6380938291549683 |
| keywords[1].display_name | Semi-supervised learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6247997879981995 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.6170929074287415 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/subspace-topology |
| keywords[4].score | 0.5940426588058472 |
| keywords[4].display_name | Subspace topology |
| keywords[5].id | https://openalex.org/keywords/discriminant |
| keywords[5].score | 0.5497432947158813 |
| keywords[5].display_name | Discriminant |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5342812538146973 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/dictionary-learning |
| keywords[7].score | 0.5178115963935852 |
| keywords[7].display_name | Dictionary learning |
| keywords[8].id | https://openalex.org/keywords/metric |
| keywords[8].score | 0.5025887489318848 |
| keywords[8].display_name | Metric (unit) |
| keywords[9].id | https://openalex.org/keywords/linear-discriminant-analysis |
| keywords[9].score | 0.47406286001205444 |
| keywords[9].display_name | Linear discriminant analysis |
| keywords[10].id | https://openalex.org/keywords/supervised-learning |
| keywords[10].score | 0.4683992564678192 |
| keywords[10].display_name | Supervised learning |
| keywords[11].id | https://openalex.org/keywords/projection |
| keywords[11].score | 0.46706753969192505 |
| keywords[11].display_name | Projection (relational algebra) |
| keywords[12].id | https://openalex.org/keywords/sparse-approximation |
| keywords[12].score | 0.3305148780345917 |
| keywords[12].display_name | Sparse approximation |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.1300983428955078 |
| keywords[13].display_name | Artificial neural network |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.08282327651977539 |
| keywords[14].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.1117/1.jei.27.4.043043 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S158511090 |
| locations[0].source.issn | 1017-9909, 1560-229X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1017-9909 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Electronic Imaging |
| locations[0].source.host_organization | https://openalex.org/P4310315543 |
| locations[0].source.host_organization_name | SPIE |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315543 |
| locations[0].source.host_organization_lineage_names | SPIE |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.spiedigitallibrary.org/journals/journal-of-electronic-imaging/volume-27/issue-4/043043/Person-reidentification-by-semisupervised-dictionary-rectification-learning-with-retraining-module/10.1117/1.JEI.27.4.043043.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Electronic Imaging |
| locations[0].landing_page_url | https://doi.org/10.1117/1.jei.27.4.043043 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100747741 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1236-6141 |
| authorships[0].author.display_name | Hongyuan Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210153482 |
| authorships[0].affiliations[0].raw_affiliation_string | Changzhou University, School of Information Science and Engineering, Changzhou, Jiangsu |
| authorships[0].institutions[0].id | https://openalex.org/I4210153482 |
| authorships[0].institutions[0].ror | https://ror.org/04ymgwq66 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210153482 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Changzhou University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hongyuan Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Changzhou University, School of Information Science and Engineering, Changzhou, Jiangsu |
| authorships[1].author.id | https://openalex.org/A5023882598 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7308-5453 |
| authorships[1].author.display_name | Zongyuan Ding |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210153482 |
| authorships[1].affiliations[0].raw_affiliation_string | Changzhou University, School of Information Science and Engineering, Changzhou, Jiangsu |
| authorships[1].institutions[0].id | https://openalex.org/I4210153482 |
| authorships[1].institutions[0].ror | https://ror.org/04ymgwq66 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210153482 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Changzhou University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zongyuan Ding |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Changzhou University, School of Information Science and Engineering, Changzhou, Jiangsu |
| authorships[2].author.id | https://openalex.org/A5100329266 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3835-7975 |
| authorships[2].author.display_name | Ji Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210153482 |
| authorships[2].affiliations[0].raw_affiliation_string | Changzhou University, School of Information Science and Engineering, Changzhou, Jiangsu |
| authorships[2].institutions[0].id | https://openalex.org/I4210153482 |
| authorships[2].institutions[0].ror | https://ror.org/04ymgwq66 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210153482 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Changzhou University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ji Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Changzhou University, School of Information Science and Engineering, Changzhou, Jiangsu |
| authorships[3].author.id | https://openalex.org/A5081802749 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Suolan Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210153482 |
| authorships[3].affiliations[0].raw_affiliation_string | Changzhou University, School of Information Science and Engineering, Changzhou, Jiangsu |
| authorships[3].institutions[0].id | https://openalex.org/I4210153482 |
| authorships[3].institutions[0].ror | https://ror.org/04ymgwq66 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210153482 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Changzhou University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Suolan Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Changzhou University, School of Information Science and Engineering, Changzhou, Jiangsu |
| authorships[4].author.id | https://openalex.org/A5003274219 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0354-5116 |
| authorships[4].author.display_name | Tongguang Ni |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210153482 |
| authorships[4].affiliations[0].raw_affiliation_string | Changzhou University, School of Information Science and Engineering, Changzhou, Jiangsu |
| authorships[4].institutions[0].id | https://openalex.org/I4210153482 |
| authorships[4].institutions[0].ror | https://ror.org/04ymgwq66 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210153482 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Changzhou University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tongguang Ni |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Changzhou University, School of Information Science and Engineering, Changzhou, Jiangsu |
| authorships[5].author.id | https://openalex.org/A5037820914 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4588-0043 |
| authorships[5].author.display_name | Fuhua Chen |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I31452180 |
| authorships[5].affiliations[0].raw_affiliation_string | West Liberty University, College of Science, West Liberty, West Virginia |
| authorships[5].institutions[0].id | https://openalex.org/I31452180 |
| authorships[5].institutions[0].ror | https://ror.org/03gfrak98 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I31452180 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | West Liberty University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Fuhua Chen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | West Liberty University, College of Science, West Liberty, West Virginia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.spiedigitallibrary.org/journals/journal-of-electronic-imaging/volume-27/issue-4/043043/Person-reidentification-by-semisupervised-dictionary-rectification-learning-with-retraining-module/10.1117/1.JEI.27.4.043043.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Person reidentification by semisupervised dictionary rectification learning with retraining module |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W2509955295, https://openalex.org/W2572092625, https://openalex.org/W122912556, https://openalex.org/W1987225540, https://openalex.org/W1586607209, https://openalex.org/W2363993830, https://openalex.org/W4312414840, https://openalex.org/W2621411691, https://openalex.org/W2271357838, https://openalex.org/W2008821896 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1117/1.jei.27.4.043043 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S158511090 |
| best_oa_location.source.issn | 1017-9909, 1560-229X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1017-9909 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Electronic Imaging |
| best_oa_location.source.host_organization | https://openalex.org/P4310315543 |
| best_oa_location.source.host_organization_name | SPIE |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315543 |
| best_oa_location.source.host_organization_lineage_names | SPIE |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.spiedigitallibrary.org/journals/journal-of-electronic-imaging/volume-27/issue-4/043043/Person-reidentification-by-semisupervised-dictionary-rectification-learning-with-retraining-module/10.1117/1.JEI.27.4.043043.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Electronic Imaging |
| best_oa_location.landing_page_url | https://doi.org/10.1117/1.jei.27.4.043043 |
| primary_location.id | doi:10.1117/1.jei.27.4.043043 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S158511090 |
| primary_location.source.issn | 1017-9909, 1560-229X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1017-9909 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Electronic Imaging |
| primary_location.source.host_organization | https://openalex.org/P4310315543 |
| primary_location.source.host_organization_name | SPIE |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315543 |
| primary_location.source.host_organization_lineage_names | SPIE |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.spiedigitallibrary.org/journals/journal-of-electronic-imaging/volume-27/issue-4/043043/Person-reidentification-by-semisupervised-dictionary-rectification-learning-with-retraining-module/10.1117/1.JEI.27.4.043043.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Electronic Imaging |
| primary_location.landing_page_url | https://doi.org/10.1117/1.jei.27.4.043043 |
| publication_date | 2018-08-11 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2046835352, https://openalex.org/W1963702692, https://openalex.org/W1971955426, https://openalex.org/W2219504084, https://openalex.org/W1979260620, https://openalex.org/W6678517311, https://openalex.org/W2068042582, https://openalex.org/W2115669554, https://openalex.org/W2613978241, https://openalex.org/W2144664362, https://openalex.org/W2030558520, https://openalex.org/W2014764728, https://openalex.org/W2203864774, https://openalex.org/W6627095619, https://openalex.org/W2228002889, https://openalex.org/W2009907187, https://openalex.org/W2520831962, https://openalex.org/W2537170730, https://openalex.org/W2468348601, https://openalex.org/W2467139031, https://openalex.org/W2162383208, https://openalex.org/W2121609805, https://openalex.org/W2520234541, https://openalex.org/W2405496876, https://openalex.org/W2345649690, https://openalex.org/W4292363360, https://openalex.org/W2118655060, https://openalex.org/W1518138188, https://openalex.org/W1596233070, https://openalex.org/W6680437308, https://openalex.org/W1602182271, https://openalex.org/W2204750386, https://openalex.org/W2022469758, https://openalex.org/W2161969291, https://openalex.org/W2163808566, https://openalex.org/W1142012885, https://openalex.org/W2139763424, https://openalex.org/W2126791727, https://openalex.org/W2164278908, https://openalex.org/W2113606819 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 16, 60, 85, 105, 130, 141, 160, 165 |
| abstract_inverted_index.At | 0 |
| abstract_inverted_index.It | 109 |
| abstract_inverted_index.On | 30 |
| abstract_inverted_index.To | 52 |
| abstract_inverted_index.as | 176 |
| abstract_inverted_index.by | 98 |
| abstract_inverted_index.in | 2, 70 |
| abstract_inverted_index.is | 23, 40, 96, 102, 133, 156, 190 |
| abstract_inverted_index.of | 5, 19, 36, 49, 59, 63, 79, 88, 114, 147, 187 |
| abstract_inverted_index.on | 170 |
| abstract_inverted_index.to | 26, 46, 66, 135, 159 |
| abstract_inverted_index.we | 56 |
| abstract_inverted_index.The | 152 |
| abstract_inverted_index.add | 67 |
| abstract_inverted_index.and | 92, 122, 144, 180 |
| abstract_inverted_index.are | 82, 128, 150 |
| abstract_inverted_index.due | 45 |
| abstract_inverted_index.not | 24 |
| abstract_inverted_index.our | 188 |
| abstract_inverted_index.the | 3, 9, 27, 31, 34, 47, 71, 76, 89, 93, 112, 115, 126, 137, 145, 148, 184 |
| abstract_inverted_index.two | 116 |
| abstract_inverted_index.use | 58 |
| abstract_inverted_index.data | 127 |
| abstract_inverted_index.into | 84, 104, 140 |
| abstract_inverted_index.lack | 48 |
| abstract_inverted_index.make | 57 |
| abstract_inverted_index.show | 182 |
| abstract_inverted_index.some | 193 |
| abstract_inverted_index.such | 175 |
| abstract_inverted_index.than | 42, 192 |
| abstract_inverted_index.that | 183 |
| abstract_inverted_index.then | 157 |
| abstract_inverted_index.thus | 110 |
| abstract_inverted_index.used | 11, 134 |
| abstract_inverted_index.with | 164 |
| abstract_inverted_index.After | 125 |
| abstract_inverted_index.PRID, | 178 |
| abstract_inverted_index.basic | 72 |
| abstract_inverted_index.field | 4 |
| abstract_inverted_index.graph | 166 |
| abstract_inverted_index.hand, | 33 |
| abstract_inverted_index.large | 17 |
| abstract_inverted_index.lower | 41 |
| abstract_inverted_index.model | 28 |
| abstract_inverted_index.other | 32, 194 |
| abstract_inverted_index.re-id | 197 |
| abstract_inverted_index.small | 61 |
| abstract_inverted_index.term. | 168 |
| abstract_inverted_index.these | 54 |
| abstract_inverted_index.which | 22, 101 |
| abstract_inverted_index.VIPeR, | 177 |
| abstract_inverted_index.amount | 18, 62 |
| abstract_inverted_index.better | 191 |
| abstract_inverted_index.iLIDS, | 179 |
| abstract_inverted_index.labels | 146 |
| abstract_inverted_index.matrix | 95, 132 |
| abstract_inverted_index.method | 189 |
| abstract_inverted_index.metric | 106, 123 |
| abstract_inverted_index.person | 6, 196 |
| abstract_inverted_index.public | 172 |
| abstract_inverted_index.sparse | 77 |
| abstract_inverted_index.CUHK01, | 181 |
| abstract_inverted_index.address | 53 |
| abstract_inverted_index.feature | 142 |
| abstract_inverted_index.issues, | 55 |
| abstract_inverted_index.labeled | 20, 64, 99 |
| abstract_inverted_index.methods | 117 |
| abstract_inverted_index.problem | 87, 155, 163 |
| abstract_inverted_index.project | 136 |
| abstract_inverted_index.require | 15 |
| abstract_inverted_index.samples | 65, 149 |
| abstract_inverted_index.through | 118 |
| abstract_inverted_index.trained | 97 |
| abstract_inverted_index.(re-id), | 8 |
| abstract_inverted_index.accuracy | 35, 186 |
| abstract_inverted_index.commonly | 10 |
| abstract_inverted_index.existing | 195 |
| abstract_inverted_index.features | 139 |
| abstract_inverted_index.learning | 13, 38, 81, 107, 121, 154, 162 |
| abstract_inverted_index.methods. | 198 |
| abstract_inverted_index.original | 90 |
| abstract_inverted_index.present, | 1 |
| abstract_inverted_index.problem. | 108 |
| abstract_inverted_index.samples, | 21, 100 |
| abstract_inverted_index.subspace | 143 |
| abstract_inverted_index.trained, | 129 |
| abstract_inverted_index.Moreover, | 75 |
| abstract_inverted_index.combining | 119 |
| abstract_inverted_index.conducive | 25 |
| abstract_inverted_index.datasets, | 174 |
| abstract_inverted_index.different | 171 |
| abstract_inverted_index.features, | 91 |
| abstract_inverted_index.learning. | 74, 124 |
| abstract_inverted_index.unlabeled | 138 |
| abstract_inverted_index.advantages | 113 |
| abstract_inverted_index.algorithms | 14, 39, 44 |
| abstract_inverted_index.decomposed | 83 |
| abstract_inverted_index.dictionary | 73, 80, 120 |
| abstract_inverted_index.integrates | 111 |
| abstract_inverted_index.pedestrian | 173 |
| abstract_inverted_index.projection | 86, 94, 131 |
| abstract_inverted_index.promotion. | 29 |
| abstract_inverted_index.supervised | 12, 43, 161 |
| abstract_inverted_index.Experiments | 169 |
| abstract_inverted_index.information | 69 |
| abstract_inverted_index.recognition | 185 |
| abstract_inverted_index.transformed | 103, 158 |
| abstract_inverted_index.coefficients | 78 |
| abstract_inverted_index.discriminant | 50, 68 |
| abstract_inverted_index.information. | 51 |
| abstract_inverted_index.unsupervised | 37 |
| abstract_inverted_index.reconstructed. | 151 |
| abstract_inverted_index.regularization | 167 |
| abstract_inverted_index.semisupervised | 153 |
| abstract_inverted_index.reidentification | 7 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6899999976158142 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.07867791 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |