pFedGPA: Diffusion-based Generative Parameter Aggregation for Personalized Federated Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.05701
Federated Learning (FL) offers a decentralized approach to model training, where data remains local and only model parameters are shared between the clients and the central server. Traditional methods, such as Federated Averaging (FedAvg), linearly aggregate these parameters which are usually trained on heterogeneous data distributions, potentially overlooking the complex, high-dimensional nature of the parameter space. This can result in degraded performance of the aggregated model. While personalized FL approaches can mitigate the heterogeneous data issue to some extent, the limitation of linear aggregation remains unresolved. To alleviate this issue, we investigate the generative approach of diffusion model and propose a novel generative parameter aggregation framework for personalized FL, \texttt{pFedGPA}. In this framework, we deploy a diffusion model on the server to integrate the diverse parameter distributions and propose a parameter inversion method to efficiently generate a set of personalized parameters for each client. This inversion method transforms the uploaded parameters into a latent code, which is then aggregated through denoising sampling to produce the final personalized parameters. By encoding the dependence of a client's model parameters on the specific data distribution using the high-capacity diffusion model, \texttt{pFedGPA} can effectively decouple the complexity of the overall distribution of all clients' model parameters from the complexity of each individual client's parameter distribution. Our experimental results consistently demonstrate the superior performance of the proposed method across multiple datasets, surpassing baseline approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.05701
- https://arxiv.org/pdf/2409.05701
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403618774
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403618774Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.05701Digital Object Identifier
- Title
-
pFedGPA: Diffusion-based Generative Parameter Aggregation for Personalized Federated LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-09Full publication date if available
- Authors
-
Jiahao Lai, Jiaqi Li, Jian Xu, Yanru Wu, Boshi Tang, Siqi Chen, Yongfeng Huang, Wenbo Ding, Yang LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.05701Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.05701Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.05701Direct OA link when available
- Concepts
-
Generative grammar, Generative model, Computer science, Diffusion, Federated learning, Artificial intelligence, Physics, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403618774 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.05701 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.05701 |
| ids.openalex | https://openalex.org/W4403618774 |
| fwci | |
| type | preprint |
| title | pFedGPA: Diffusion-based Generative Parameter Aggregation for Personalized Federated Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9940000176429749 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39890363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7955403923988342 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[0].display_name | Generative grammar |
| concepts[1].id | https://openalex.org/C167966045 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6380009055137634 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[1].display_name | Generative model |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.615911602973938 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C69357855 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6156476736068726 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[3].display_name | Diffusion |
| concepts[4].id | https://openalex.org/C2992525071 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48337501287460327 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q50818671 |
| concepts[4].display_name | Federated learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3532107472419739 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0913127064704895 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C97355855 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[7].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/generative-grammar |
| keywords[0].score | 0.7955403923988342 |
| keywords[0].display_name | Generative grammar |
| keywords[1].id | https://openalex.org/keywords/generative-model |
| keywords[1].score | 0.6380009055137634 |
| keywords[1].display_name | Generative model |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.615911602973938 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/diffusion |
| keywords[3].score | 0.6156476736068726 |
| keywords[3].display_name | Diffusion |
| keywords[4].id | https://openalex.org/keywords/federated-learning |
| keywords[4].score | 0.48337501287460327 |
| keywords[4].display_name | Federated learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3532107472419739 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.0913127064704895 |
| keywords[6].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.05701 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.05701 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.05701 |
| locations[1].id | doi:10.48550/arxiv.2409.05701 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.05701 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5088961342 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jiahao Lai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lai, Jiahao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100325987 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-7799-3407 |
| authorships[1].author.display_name | Jiaqi Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Jiaqi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5111722392 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jian Xu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xu, Jian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5047787810 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1447-5336 |
| authorships[3].author.display_name | Yanru Wu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wu, Yanru |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101255349 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Boshi Tang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tang, Boshi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100460970 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7671-3398 |
| authorships[5].author.display_name | Siqi Chen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chen, Siqi |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100768896 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3825-2230 |
| authorships[6].author.display_name | Yongfeng Huang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Huang, Yongfeng |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5068575030 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Wenbo Ding |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Ding, Wenbo |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100772974 |
| authorships[8].author.orcid | https://orcid.org/0009-0001-8807-130X |
| authorships[8].author.display_name | Yang Li |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Li, Yang |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.05701 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | pFedGPA: Diffusion-based Generative Parameter Aggregation for Personalized Federated Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9940000176429749 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W4365211920, https://openalex.org/W3014948380, https://openalex.org/W4380551139, https://openalex.org/W4317695495, https://openalex.org/W4287117424, https://openalex.org/W4387506531, https://openalex.org/W2087346071, https://openalex.org/W2967848559, https://openalex.org/W4299831724, https://openalex.org/W4283803360 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.05701 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.05701 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.05701 |
| primary_location.id | pmh:oai:arXiv.org:2409.05701 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.05701 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.05701 |
| publication_date | 2024-09-09 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 100, 115, 129, 136, 152, 173 |
| abstract_inverted_index.By | 168 |
| abstract_inverted_index.FL | 68 |
| abstract_inverted_index.In | 110 |
| abstract_inverted_index.To | 86 |
| abstract_inverted_index.as | 30 |
| abstract_inverted_index.in | 59 |
| abstract_inverted_index.is | 156 |
| abstract_inverted_index.of | 52, 62, 81, 95, 138, 172, 193, 197, 205, 219 |
| abstract_inverted_index.on | 42, 118, 177 |
| abstract_inverted_index.to | 7, 76, 121, 133, 162 |
| abstract_inverted_index.we | 90, 113 |
| abstract_inverted_index.FL, | 108 |
| abstract_inverted_index.Our | 211 |
| abstract_inverted_index.all | 198 |
| abstract_inverted_index.and | 14, 23, 98, 127 |
| abstract_inverted_index.are | 18, 39 |
| abstract_inverted_index.can | 57, 70, 188 |
| abstract_inverted_index.for | 106, 141 |
| abstract_inverted_index.set | 137 |
| abstract_inverted_index.the | 21, 24, 48, 53, 63, 72, 79, 92, 119, 123, 148, 164, 170, 178, 183, 191, 194, 203, 216, 220 |
| abstract_inverted_index.(FL) | 2 |
| abstract_inverted_index.This | 56, 144 |
| abstract_inverted_index.data | 11, 44, 74, 180 |
| abstract_inverted_index.each | 142, 206 |
| abstract_inverted_index.from | 202 |
| abstract_inverted_index.into | 151 |
| abstract_inverted_index.only | 15 |
| abstract_inverted_index.some | 77 |
| abstract_inverted_index.such | 29 |
| abstract_inverted_index.then | 157 |
| abstract_inverted_index.this | 88, 111 |
| abstract_inverted_index.While | 66 |
| abstract_inverted_index.code, | 154 |
| abstract_inverted_index.final | 165 |
| abstract_inverted_index.issue | 75 |
| abstract_inverted_index.local | 13 |
| abstract_inverted_index.model | 8, 16, 97, 117, 175, 200 |
| abstract_inverted_index.novel | 101 |
| abstract_inverted_index.these | 36 |
| abstract_inverted_index.using | 182 |
| abstract_inverted_index.where | 10 |
| abstract_inverted_index.which | 38, 155 |
| abstract_inverted_index.across | 223 |
| abstract_inverted_index.deploy | 114 |
| abstract_inverted_index.issue, | 89 |
| abstract_inverted_index.latent | 153 |
| abstract_inverted_index.linear | 82 |
| abstract_inverted_index.method | 132, 146, 222 |
| abstract_inverted_index.model, | 186 |
| abstract_inverted_index.model. | 65 |
| abstract_inverted_index.nature | 51 |
| abstract_inverted_index.offers | 3 |
| abstract_inverted_index.result | 58 |
| abstract_inverted_index.server | 120 |
| abstract_inverted_index.shared | 19 |
| abstract_inverted_index.space. | 55 |
| abstract_inverted_index.between | 20 |
| abstract_inverted_index.central | 25 |
| abstract_inverted_index.client. | 143 |
| abstract_inverted_index.clients | 22 |
| abstract_inverted_index.diverse | 124 |
| abstract_inverted_index.extent, | 78 |
| abstract_inverted_index.overall | 195 |
| abstract_inverted_index.produce | 163 |
| abstract_inverted_index.propose | 99, 128 |
| abstract_inverted_index.remains | 12, 84 |
| abstract_inverted_index.results | 213 |
| abstract_inverted_index.server. | 26 |
| abstract_inverted_index.through | 159 |
| abstract_inverted_index.trained | 41 |
| abstract_inverted_index.usually | 40 |
| abstract_inverted_index.Learning | 1 |
| abstract_inverted_index.approach | 6, 94 |
| abstract_inverted_index.baseline | 227 |
| abstract_inverted_index.client's | 174, 208 |
| abstract_inverted_index.clients' | 199 |
| abstract_inverted_index.complex, | 49 |
| abstract_inverted_index.decouple | 190 |
| abstract_inverted_index.degraded | 60 |
| abstract_inverted_index.encoding | 169 |
| abstract_inverted_index.generate | 135 |
| abstract_inverted_index.linearly | 34 |
| abstract_inverted_index.methods, | 28 |
| abstract_inverted_index.mitigate | 71 |
| abstract_inverted_index.multiple | 224 |
| abstract_inverted_index.proposed | 221 |
| abstract_inverted_index.sampling | 161 |
| abstract_inverted_index.specific | 179 |
| abstract_inverted_index.superior | 217 |
| abstract_inverted_index.uploaded | 149 |
| abstract_inverted_index.(FedAvg), | 33 |
| abstract_inverted_index.Averaging | 32 |
| abstract_inverted_index.Federated | 0, 31 |
| abstract_inverted_index.aggregate | 35 |
| abstract_inverted_index.alleviate | 87 |
| abstract_inverted_index.datasets, | 225 |
| abstract_inverted_index.denoising | 160 |
| abstract_inverted_index.diffusion | 96, 116, 185 |
| abstract_inverted_index.framework | 105 |
| abstract_inverted_index.integrate | 122 |
| abstract_inverted_index.inversion | 131, 145 |
| abstract_inverted_index.parameter | 54, 103, 125, 130, 209 |
| abstract_inverted_index.training, | 9 |
| abstract_inverted_index.aggregated | 64, 158 |
| abstract_inverted_index.approaches | 69 |
| abstract_inverted_index.complexity | 192, 204 |
| abstract_inverted_index.dependence | 171 |
| abstract_inverted_index.framework, | 112 |
| abstract_inverted_index.generative | 93, 102 |
| abstract_inverted_index.individual | 207 |
| abstract_inverted_index.limitation | 80 |
| abstract_inverted_index.parameters | 17, 37, 140, 150, 176, 201 |
| abstract_inverted_index.surpassing | 226 |
| abstract_inverted_index.transforms | 147 |
| abstract_inverted_index.Traditional | 27 |
| abstract_inverted_index.aggregation | 83, 104 |
| abstract_inverted_index.approaches. | 228 |
| abstract_inverted_index.demonstrate | 215 |
| abstract_inverted_index.effectively | 189 |
| abstract_inverted_index.efficiently | 134 |
| abstract_inverted_index.investigate | 91 |
| abstract_inverted_index.overlooking | 47 |
| abstract_inverted_index.parameters. | 167 |
| abstract_inverted_index.performance | 61, 218 |
| abstract_inverted_index.potentially | 46 |
| abstract_inverted_index.unresolved. | 85 |
| abstract_inverted_index.consistently | 214 |
| abstract_inverted_index.distribution | 181, 196 |
| abstract_inverted_index.experimental | 212 |
| abstract_inverted_index.personalized | 67, 107, 139, 166 |
| abstract_inverted_index.decentralized | 5 |
| abstract_inverted_index.distribution. | 210 |
| abstract_inverted_index.distributions | 126 |
| abstract_inverted_index.heterogeneous | 43, 73 |
| abstract_inverted_index.high-capacity | 184 |
| abstract_inverted_index.distributions, | 45 |
| abstract_inverted_index.\texttt{pFedGPA} | 187 |
| abstract_inverted_index.high-dimensional | 50 |
| abstract_inverted_index.\texttt{pFedGPA}. | 109 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |