PFL-IDGAN:Personalized Federated Learning Framework Based on Interactive Dual Generative Adversarial Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3233/faia250942
Federated learning (FL) enables collaborative model training without direct data exchange, promoting privacy-preserving data utilization. To address performance degradation caused by non-independent and identically distributed (non-IID) data, Personalized Federated Learning (PFL) allows each client to learn a model tailored to its local distribution. However, real-world personalized scenarios often involve not only data heterogeneity but also model heterogeneity across clients. Existing PFL methods struggle under the coexistence of both, as parameter aggregation requires identical model structures, while knowledge distillation often relies on shared public data. To tackle these challenges, we propose a novel PFL framework called Personalized Federated Learning based on Interactive Dual Generative Adversarial Networks (PFL-IDGAN). This framework leverages Generative Adversarial Networks (GANs) to augment local datasets, effectively mitigating label discrepancies and non-iid. data issues across clients. Moreover, it introduces a dual adversarial learning mechanism that enables fine-grained knowledge transfer and collaboration across clients, while supporting heterogeneous model architectures. Extensive experiments demonstrate that the proposed PFL-IDGAN framework significantly outperforms existing baseline methods, particularly in settings with pronounced disparities in client models and data distributions.
Related Topics
- Type
- book-chapter
- Landing Page
- https://doi.org/10.3233/faia250942
- OA Status
- hybrid
- OpenAlex ID
- https://openalex.org/W4415428729
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415428729Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3233/faia250942Digital Object Identifier
- Title
-
PFL-IDGAN:Personalized Federated Learning Framework Based on Interactive Dual Generative Adversarial NetworksWork title
- Type
-
book-chapterOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-21Full publication date if available
- Authors
-
Zhigang Wang, Yan Yang, Xiaochi Hou, Junfeng ZhaoList of authors in order
- Landing page
-
https://doi.org/10.3233/faia250942Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3233/faia250942Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415428729 |
|---|---|
| doi | https://doi.org/10.3233/faia250942 |
| ids.doi | https://doi.org/10.3233/faia250942 |
| ids.openalex | https://openalex.org/W4415428729 |
| fwci | 0.0 |
| type | book-chapter |
| title | PFL-IDGAN:Personalized Federated Learning Framework Based on Interactive Dual Generative Adversarial Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9926000237464905 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T10775 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9205999970436096 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.3233/faia250942 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201731 |
| locations[0].source.issn | 0922-6389, 1879-8314 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0922-6389 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Frontiers in artificial intelligence and applications |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Artificial Intelligence and Applications |
| locations[0].landing_page_url | https://doi.org/10.3233/faia250942 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100414853 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3029-7151 |
| authorships[0].author.display_name | Zhigang Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2722730 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science, Inner Mongolia University, Hohhot, Inner Mongolia, 01002, China |
| authorships[0].institutions[0].id | https://openalex.org/I2722730 |
| authorships[0].institutions[0].ror | https://ror.org/0106qb496 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2722730 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Inner Mongolia University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhigang Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer Science, Inner Mongolia University, Hohhot, Inner Mongolia, 01002, China |
| authorships[1].author.id | https://openalex.org/A5068760974 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5719-043X |
| authorships[1].author.display_name | Yan Yang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2722730 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science, Inner Mongolia University, Hohhot, Inner Mongolia, 01002, China |
| authorships[1].institutions[0].id | https://openalex.org/I2722730 |
| authorships[1].institutions[0].ror | https://ror.org/0106qb496 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I2722730 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Inner Mongolia University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yan Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science, Inner Mongolia University, Hohhot, Inner Mongolia, 01002, China |
| authorships[2].author.id | https://openalex.org/A5119498942 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xiaochi Hou |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2722730 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computer Science, Inner Mongolia University, Hohhot, Inner Mongolia, 01002, China |
| authorships[2].institutions[0].id | https://openalex.org/I2722730 |
| authorships[2].institutions[0].ror | https://ror.org/0106qb496 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I2722730 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Inner Mongolia University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaochi Hou |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer Science, Inner Mongolia University, Hohhot, Inner Mongolia, 01002, China |
| authorships[3].author.id | https://openalex.org/A5007014944 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4843-4871 |
| authorships[3].author.display_name | Junfeng Zhao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2722730 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Computer Science, Inner Mongolia University, Hohhot, Inner Mongolia, 01002, China |
| authorships[3].institutions[0].id | https://openalex.org/I2722730 |
| authorships[3].institutions[0].ror | https://ror.org/0106qb496 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I2722730 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Inner Mongolia University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Junfeng Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Computer Science, Inner Mongolia University, Hohhot, Inner Mongolia, 01002, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3233/faia250942 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-24T00:00:00 |
| display_name | PFL-IDGAN:Personalized Federated Learning Framework Based on Interactive Dual Generative Adversarial Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9926000237464905 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3233/faia250942 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201731 |
| best_oa_location.source.issn | 0922-6389, 1879-8314 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0922-6389 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Frontiers in artificial intelligence and applications |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Artificial Intelligence and Applications |
| best_oa_location.landing_page_url | https://doi.org/10.3233/faia250942 |
| primary_location.id | doi:10.3233/faia250942 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201731 |
| primary_location.source.issn | 0922-6389, 1879-8314 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0922-6389 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Frontiers in artificial intelligence and applications |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Artificial Intelligence and Applications |
| primary_location.landing_page_url | https://doi.org/10.3233/faia250942 |
| publication_date | 2025-10-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 36, 90, 130 |
| abstract_inverted_index.To | 15, 84 |
| abstract_inverted_index.as | 68 |
| abstract_inverted_index.by | 20 |
| abstract_inverted_index.in | 163, 168 |
| abstract_inverted_index.it | 128 |
| abstract_inverted_index.of | 66 |
| abstract_inverted_index.on | 80, 99 |
| abstract_inverted_index.to | 34, 39, 113 |
| abstract_inverted_index.we | 88 |
| abstract_inverted_index.PFL | 60, 92 |
| abstract_inverted_index.and | 22, 121, 140, 171 |
| abstract_inverted_index.but | 53 |
| abstract_inverted_index.its | 40 |
| abstract_inverted_index.not | 49 |
| abstract_inverted_index.the | 64, 153 |
| abstract_inverted_index.(FL) | 2 |
| abstract_inverted_index.Dual | 101 |
| abstract_inverted_index.This | 106 |
| abstract_inverted_index.also | 54 |
| abstract_inverted_index.data | 9, 13, 51, 123, 172 |
| abstract_inverted_index.dual | 131 |
| abstract_inverted_index.each | 32 |
| abstract_inverted_index.only | 50 |
| abstract_inverted_index.that | 135, 152 |
| abstract_inverted_index.with | 165 |
| abstract_inverted_index.(PFL) | 30 |
| abstract_inverted_index.based | 98 |
| abstract_inverted_index.both, | 67 |
| abstract_inverted_index.data, | 26 |
| abstract_inverted_index.data. | 83 |
| abstract_inverted_index.label | 119 |
| abstract_inverted_index.learn | 35 |
| abstract_inverted_index.local | 41, 115 |
| abstract_inverted_index.model | 5, 37, 55, 73, 147 |
| abstract_inverted_index.novel | 91 |
| abstract_inverted_index.often | 47, 78 |
| abstract_inverted_index.these | 86 |
| abstract_inverted_index.under | 63 |
| abstract_inverted_index.while | 75, 144 |
| abstract_inverted_index.(GANs) | 112 |
| abstract_inverted_index.across | 57, 125, 142 |
| abstract_inverted_index.allows | 31 |
| abstract_inverted_index.called | 94 |
| abstract_inverted_index.caused | 19 |
| abstract_inverted_index.client | 33, 169 |
| abstract_inverted_index.direct | 8 |
| abstract_inverted_index.issues | 124 |
| abstract_inverted_index.models | 170 |
| abstract_inverted_index.public | 82 |
| abstract_inverted_index.relies | 79 |
| abstract_inverted_index.shared | 81 |
| abstract_inverted_index.tackle | 85 |
| abstract_inverted_index.address | 16 |
| abstract_inverted_index.augment | 114 |
| abstract_inverted_index.enables | 3, 136 |
| abstract_inverted_index.involve | 48 |
| abstract_inverted_index.methods | 61 |
| abstract_inverted_index.propose | 89 |
| abstract_inverted_index.without | 7 |
| abstract_inverted_index.Existing | 59 |
| abstract_inverted_index.However, | 43 |
| abstract_inverted_index.Learning | 29, 97 |
| abstract_inverted_index.Networks | 104, 111 |
| abstract_inverted_index.baseline | 160 |
| abstract_inverted_index.clients, | 143 |
| abstract_inverted_index.clients. | 58, 126 |
| abstract_inverted_index.existing | 159 |
| abstract_inverted_index.learning | 1, 133 |
| abstract_inverted_index.methods, | 161 |
| abstract_inverted_index.non-iid. | 122 |
| abstract_inverted_index.proposed | 154 |
| abstract_inverted_index.requires | 71 |
| abstract_inverted_index.settings | 164 |
| abstract_inverted_index.struggle | 62 |
| abstract_inverted_index.tailored | 38 |
| abstract_inverted_index.training | 6 |
| abstract_inverted_index.transfer | 139 |
| abstract_inverted_index.(non-IID) | 25 |
| abstract_inverted_index.Extensive | 149 |
| abstract_inverted_index.Federated | 0, 28, 96 |
| abstract_inverted_index.Moreover, | 127 |
| abstract_inverted_index.PFL-IDGAN | 155 |
| abstract_inverted_index.datasets, | 116 |
| abstract_inverted_index.exchange, | 10 |
| abstract_inverted_index.framework | 93, 107, 156 |
| abstract_inverted_index.identical | 72 |
| abstract_inverted_index.knowledge | 76, 138 |
| abstract_inverted_index.leverages | 108 |
| abstract_inverted_index.mechanism | 134 |
| abstract_inverted_index.parameter | 69 |
| abstract_inverted_index.promoting | 11 |
| abstract_inverted_index.scenarios | 46 |
| abstract_inverted_index.Generative | 102, 109 |
| abstract_inverted_index.introduces | 129 |
| abstract_inverted_index.mitigating | 118 |
| abstract_inverted_index.pronounced | 166 |
| abstract_inverted_index.real-world | 44 |
| abstract_inverted_index.supporting | 145 |
| abstract_inverted_index.Adversarial | 103, 110 |
| abstract_inverted_index.Interactive | 100 |
| abstract_inverted_index.adversarial | 132 |
| abstract_inverted_index.aggregation | 70 |
| abstract_inverted_index.challenges, | 87 |
| abstract_inverted_index.coexistence | 65 |
| abstract_inverted_index.degradation | 18 |
| abstract_inverted_index.demonstrate | 151 |
| abstract_inverted_index.disparities | 167 |
| abstract_inverted_index.distributed | 24 |
| abstract_inverted_index.effectively | 117 |
| abstract_inverted_index.experiments | 150 |
| abstract_inverted_index.identically | 23 |
| abstract_inverted_index.outperforms | 158 |
| abstract_inverted_index.performance | 17 |
| abstract_inverted_index.structures, | 74 |
| abstract_inverted_index.(PFL-IDGAN). | 105 |
| abstract_inverted_index.Personalized | 27, 95 |
| abstract_inverted_index.distillation | 77 |
| abstract_inverted_index.fine-grained | 137 |
| abstract_inverted_index.particularly | 162 |
| abstract_inverted_index.personalized | 45 |
| abstract_inverted_index.utilization. | 14 |
| abstract_inverted_index.collaboration | 141 |
| abstract_inverted_index.collaborative | 4 |
| abstract_inverted_index.discrepancies | 120 |
| abstract_inverted_index.distribution. | 42 |
| abstract_inverted_index.heterogeneity | 52, 56 |
| abstract_inverted_index.heterogeneous | 146 |
| abstract_inverted_index.significantly | 157 |
| abstract_inverted_index.architectures. | 148 |
| abstract_inverted_index.distributions. | 173 |
| abstract_inverted_index.non-independent | 21 |
| abstract_inverted_index.privacy-preserving | 12 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.62538996 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |