Pgdiffseg: Prior-Guided Denoising Diffusion Model with Parameter-Shared Attention for Breast Cancer Segmentation Article Swipe
Feiyan Feng
,
Hong Wang
,
Tongze Liu
,
Wei Li
,
Yanshen Sun
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5078060
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5078060
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.5078060
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406354575
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406354575Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5078060Digital Object Identifier
- Title
-
Pgdiffseg: Prior-Guided Denoising Diffusion Model with Parameter-Shared Attention for Breast Cancer SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Feiyan Feng, Hong Wang, Tongze Liu, Wei Li, Yanshen SunList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5078060Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5078060Direct OA link when available
- Concepts
-
Breast cancer, Noise reduction, Segmentation, Diffusion, Computer science, Artificial intelligence, Cancer, Medicine, Internal medicine, Physics, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406354575 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5078060 |
| ids.doi | https://doi.org/10.2139/ssrn.5078060 |
| ids.openalex | https://openalex.org/W4406354575 |
| fwci | 0.0 |
| type | preprint |
| title | Pgdiffseg: Prior-Guided Denoising Diffusion Model with Parameter-Shared Attention for Breast Cancer Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9850999712944031 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9545000195503235 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C530470458 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6970082521438599 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q128581 |
| concepts[0].display_name | Breast cancer |
| concepts[1].id | https://openalex.org/C163294075 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6077584028244019 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[1].display_name | Noise reduction |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5750439167022705 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C69357855 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5661126971244812 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[3].display_name | Diffusion |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5062614679336548 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.448013037443161 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C121608353 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4009644389152527 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[6].display_name | Cancer |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.27618998289108276 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C126322002 |
| concepts[8].level | 1 |
| concepts[8].score | 0.14148864150047302 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[8].display_name | Internal medicine |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.11309036612510681 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C97355855 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[10].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/breast-cancer |
| keywords[0].score | 0.6970082521438599 |
| keywords[0].display_name | Breast cancer |
| keywords[1].id | https://openalex.org/keywords/noise-reduction |
| keywords[1].score | 0.6077584028244019 |
| keywords[1].display_name | Noise reduction |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.5750439167022705 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/diffusion |
| keywords[3].score | 0.5661126971244812 |
| keywords[3].display_name | Diffusion |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5062614679336548 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.448013037443161 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/cancer |
| keywords[6].score | 0.4009644389152527 |
| keywords[6].display_name | Cancer |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.27618998289108276 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/internal-medicine |
| keywords[8].score | 0.14148864150047302 |
| keywords[8].display_name | Internal medicine |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.11309036612510681 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | doi:10.2139/ssrn.5078060 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.5078060 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5104134859 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Feiyan Feng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Feiyan Feng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100370862 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5727-7834 |
| authorships[1].author.display_name | Hong Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hong Wang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5083486825 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-3007-7840 |
| authorships[2].author.display_name | Tongze Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tianyv Liu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100689763 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7367-4178 |
| authorships[3].author.display_name | Wei Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wei Li |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101844690 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4185-0066 |
| authorships[4].author.display_name | Yanshen Sun |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yanshen Sun |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.5078060 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Pgdiffseg: Prior-Guided Denoising Diffusion Model with Parameter-Shared Attention for Breast Cancer Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9850999712944031 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W4405112912, https://openalex.org/W2375584271, https://openalex.org/W1997105855, https://openalex.org/W4301030387, https://openalex.org/W2414286769, https://openalex.org/W2013223288, https://openalex.org/W2186113122, https://openalex.org/W4379231730, https://openalex.org/W1523310174 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5078060 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.5078060 |
| primary_location.id | doi:10.2139/ssrn.5078060 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.5078060 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.00449265 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |