PGNN-Net: Parallel Graph Neural Networks for Hyperspectral Image Classification Using Multiple Spatial-Spectral Features Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/rs16183531
Hyperspectral image (HSI) shows great potential for application in remote sensing due to its rich spectral information and fine spatial resolution. However, the high dimensionality, nonlinearity, and complex relationship between spectral and spatial features of HSI pose challenges to its accurate classification. Traditional convolutional neural network (CNN)-based methods suffer from detail loss in feature extraction; Transformer-based methods rely too much on the quantity and quality of HSI; and graph neural network (GNN)-based methods provide a new impetus for HSI classification by virtue of their excellent ability to handle irregular data. To address these challenges and take advantage of GNN, we propose a network of parallel GNNs called PGNN-Net. The network first extracts the key spatial-spectral features of HSI using principal component analysis, followed by preprocessing to obtain two primary features and a normalized adjacency matrix. Then, a parallel architecture is constructed using improved GCN and ChebNet to extract local and global spatial-spectral features, respectively. Finally, the discriminative features obtained through the fusion strategy are input into the classifier to obtain the classification results. In addition, to alleviate the over-fitting problem, the label smoothing technique is embedded in the cross-entropy loss function. The experimental results show that the average overall accuracy obtained by our method on Indian Pines, Kennedy Space Center, Pavia University Scene, and Botswana reaches 97.35%, 99.40%, 99.64%, and 98.46%, respectively, which are better compared to some state-of-the-art methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs16183531
- OA Status
- gold
- Cited By
- 4
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402775658
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402775658Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs16183531Digital Object Identifier
- Title
-
PGNN-Net: Parallel Graph Neural Networks for Hyperspectral Image Classification Using Multiple Spatial-Spectral FeaturesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-23Full publication date if available
- Authors
-
Ningbo Guo, Mingyong Jiang, Decheng Wang, Yutong Jia, Kaitao Li, Yanan Zhang, Mingdong Wang, Jiancheng LuoList of authors in order
- Landing page
-
https://doi.org/10.3390/rs16183531Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/rs16183531Direct OA link when available
- Concepts
-
Hyperspectral imaging, Computer science, Pattern recognition (psychology), Artificial intelligence, Graph, Net (polyhedron), Mathematics, Theoretical computer science, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402775658 |
|---|---|
| doi | https://doi.org/10.3390/rs16183531 |
| ids.doi | https://doi.org/10.3390/rs16183531 |
| ids.openalex | https://openalex.org/W4402775658 |
| fwci | 2.45974001 |
| type | article |
| title | PGNN-Net: Parallel Graph Neural Networks for Hyperspectral Image Classification Using Multiple Spatial-Spectral Features |
| biblio.issue | 18 |
| biblio.volume | 16 |
| biblio.last_page | 3531 |
| biblio.first_page | 3531 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T13890 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9779000282287598 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Remote Sensing and Land Use |
| topics[2].id | https://openalex.org/T10824 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9760000109672546 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Retrieval and Classification Techniques |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7405411601066589 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6618791222572327 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.546760618686676 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.49775078892707825 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4495932161808014 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C14166107 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4187612235546112 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q253829 |
| concepts[5].display_name | Net (polyhedron) |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1109447181224823 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C80444323 |
| concepts[7].level | 1 |
| concepts[7].score | 0.09868636727333069 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[7].display_name | Theoretical computer science |
| concepts[8].id | https://openalex.org/C2524010 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[8].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.7405411601066589 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6618791222572327 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.546760618686676 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.49775078892707825 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.4495932161808014 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/net |
| keywords[5].score | 0.4187612235546112 |
| keywords[5].display_name | Net (polyhedron) |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.1109447181224823 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[7].score | 0.09868636727333069 |
| keywords[7].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.3390/rs16183531 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs16183531 |
| locations[1].id | pmh:oai:doaj.org/article:198775d14842494cbb1d7891a453e501 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 16, Iss 18, p 3531 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/198775d14842494cbb1d7891a453e501 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5045559707 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5670-9436 |
| authorships[0].author.display_name | Ningbo Guo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210148107 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Space Information, Space Engineering University, Beijing 101400, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210148107 |
| authorships[0].institutions[0].ror | https://ror.org/04rj1td02 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210148107 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Space Engineering University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ningbo Guo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Space Information, Space Engineering University, Beijing 101400, China |
| authorships[1].author.id | https://openalex.org/A5046747076 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mingyong Jiang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210148107 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Space Information, Space Engineering University, Beijing 101400, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210148107 |
| authorships[1].institutions[0].ror | https://ror.org/04rj1td02 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210148107 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Space Engineering University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mingyong Jiang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Space Information, Space Engineering University, Beijing 101400, China |
| authorships[2].author.id | https://openalex.org/A5101876543 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4424-1589 |
| authorships[2].author.display_name | Decheng Wang |
| authorships[2].affiliations[0].raw_affiliation_string | Beijing Institute of Tracking and Telecommunication Technology, Beijing 100094, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Decheng Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Beijing Institute of Tracking and Telecommunication Technology, Beijing 100094, China |
| authorships[3].author.id | https://openalex.org/A5044361353 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6441-0859 |
| authorships[3].author.display_name | Yutong Jia |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210148107 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Space Information, Space Engineering University, Beijing 101400, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210148107 |
| authorships[3].institutions[0].ror | https://ror.org/04rj1td02 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210148107 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Space Engineering University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yutong Jia |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Space Information, Space Engineering University, Beijing 101400, China |
| authorships[4].author.id | https://openalex.org/A5076642136 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2610-0064 |
| authorships[4].author.display_name | Kaitao Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210148107 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Space Information, Space Engineering University, Beijing 101400, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210148107 |
| authorships[4].institutions[0].ror | https://ror.org/04rj1td02 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210148107 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Space Engineering University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kaitao Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Space Information, Space Engineering University, Beijing 101400, China |
| authorships[5].author.id | https://openalex.org/A5100415515 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Yanan Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210148107 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Space Information, Space Engineering University, Beijing 101400, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210148107 |
| authorships[5].institutions[0].ror | https://ror.org/04rj1td02 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210148107 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Space Engineering University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yanan Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Space Information, Space Engineering University, Beijing 101400, China |
| authorships[6].author.id | https://openalex.org/A5102860009 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3292-2726 |
| authorships[6].author.display_name | Mingdong Wang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210148107 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Space Information, Space Engineering University, Beijing 101400, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210148107 |
| authorships[6].institutions[0].ror | https://ror.org/04rj1td02 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210148107 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Space Engineering University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Mingdong Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Space Information, Space Engineering University, Beijing 101400, China |
| authorships[7].author.id | https://openalex.org/A5038534200 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1417-3995 |
| authorships[7].author.display_name | Jiancheng Luo |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210137199, https://openalex.org/I4210166112 |
| authorships[7].affiliations[0].raw_affiliation_string | State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210137199 |
| authorships[7].institutions[0].ror | https://ror.org/0419fj215 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210137199 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Aerospace Information Research Institute |
| authorships[7].institutions[1].id | https://openalex.org/I19820366 |
| authorships[7].institutions[1].ror | https://ror.org/034t30j35 |
| authorships[7].institutions[1].type | government |
| authorships[7].institutions[1].lineage | https://openalex.org/I19820366 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | Chinese Academy of Sciences |
| authorships[7].institutions[2].id | https://openalex.org/I4210166112 |
| authorships[7].institutions[2].ror | https://ror.org/05wzjqa24 |
| authorships[7].institutions[2].type | facility |
| authorships[7].institutions[2].lineage | https://openalex.org/I4210166112 |
| authorships[7].institutions[2].country_code | CN |
| authorships[7].institutions[2].display_name | State Key Laboratory of Remote Sensing Science |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Jiancheng Luo |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/rs16183531 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | PGNN-Net: Parallel Graph Neural Networks for Hyperspectral Image Classification Using Multiple Spatial-Spectral Features |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2072166414, https://openalex.org/W3209970181, https://openalex.org/W2060875994, https://openalex.org/W3034375524, https://openalex.org/W4230131218, https://openalex.org/W2070598848, https://openalex.org/W2044184146, https://openalex.org/W4313014865, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs16183531 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs16183531 |
| primary_location.id | doi:10.3390/rs16183531 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs16183531 |
| publication_date | 2024-09-23 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4308789845, https://openalex.org/W4394993768, https://openalex.org/W4220853886, https://openalex.org/W3075397214, https://openalex.org/W4210463362, https://openalex.org/W6848016077, https://openalex.org/W4225146933, https://openalex.org/W2221243399, https://openalex.org/W2028768288, https://openalex.org/W2003131921, https://openalex.org/W2340716013, https://openalex.org/W4321788231, https://openalex.org/W2793272303, https://openalex.org/W2962770389, https://openalex.org/W2942454403, https://openalex.org/W3211463094, https://openalex.org/W3014740345, https://openalex.org/W2614256707, https://openalex.org/W2548377017, https://openalex.org/W6840360099, https://openalex.org/W3171853541, https://openalex.org/W4398787803, https://openalex.org/W6767596834, https://openalex.org/W4214598159, https://openalex.org/W2577238056, https://openalex.org/W2888119354, https://openalex.org/W2793941577, https://openalex.org/W4368232741, https://openalex.org/W6799693006, https://openalex.org/W4292451729, https://openalex.org/W6797691975, https://openalex.org/W4387245208, https://openalex.org/W4292553536, https://openalex.org/W4296339430, https://openalex.org/W4386165662, https://openalex.org/W4385240591, https://openalex.org/W2892621946, https://openalex.org/W6801559280, https://openalex.org/W4385336589, https://openalex.org/W4313004766, https://openalex.org/W4312075150, https://openalex.org/W4285124290, https://openalex.org/W4313524854, https://openalex.org/W2970928848, https://openalex.org/W3200705513, https://openalex.org/W3103753223, https://openalex.org/W3098388691, https://openalex.org/W3191251640, https://openalex.org/W3214821343 |
| referenced_works_count | 49 |
| abstract_inverted_index.a | 74, 101, 131, 136 |
| abstract_inverted_index.In | 173 |
| abstract_inverted_index.To | 90 |
| abstract_inverted_index.by | 80, 123, 201 |
| abstract_inverted_index.in | 8, 52, 186 |
| abstract_inverted_index.is | 139, 184 |
| abstract_inverted_index.of | 34, 65, 82, 97, 103, 116 |
| abstract_inverted_index.on | 60, 204 |
| abstract_inverted_index.to | 12, 38, 86, 125, 146, 168, 175, 226 |
| abstract_inverted_index.we | 99 |
| abstract_inverted_index.GCN | 143 |
| abstract_inverted_index.HSI | 35, 78, 117 |
| abstract_inverted_index.The | 108, 191 |
| abstract_inverted_index.and | 17, 26, 31, 63, 67, 94, 130, 144, 149, 213, 219 |
| abstract_inverted_index.are | 163, 223 |
| abstract_inverted_index.due | 11 |
| abstract_inverted_index.for | 6, 77 |
| abstract_inverted_index.its | 13, 39 |
| abstract_inverted_index.key | 113 |
| abstract_inverted_index.new | 75 |
| abstract_inverted_index.our | 202 |
| abstract_inverted_index.the | 22, 61, 112, 155, 160, 166, 170, 177, 180, 187, 196 |
| abstract_inverted_index.too | 58 |
| abstract_inverted_index.two | 127 |
| abstract_inverted_index.GNN, | 98 |
| abstract_inverted_index.GNNs | 105 |
| abstract_inverted_index.HSI; | 66 |
| abstract_inverted_index.fine | 18 |
| abstract_inverted_index.from | 49 |
| abstract_inverted_index.high | 23 |
| abstract_inverted_index.into | 165 |
| abstract_inverted_index.loss | 51, 189 |
| abstract_inverted_index.much | 59 |
| abstract_inverted_index.pose | 36 |
| abstract_inverted_index.rely | 57 |
| abstract_inverted_index.rich | 14 |
| abstract_inverted_index.show | 194 |
| abstract_inverted_index.some | 227 |
| abstract_inverted_index.take | 95 |
| abstract_inverted_index.that | 195 |
| abstract_inverted_index.(HSI) | 2 |
| abstract_inverted_index.Pavia | 210 |
| abstract_inverted_index.Space | 208 |
| abstract_inverted_index.Then, | 135 |
| abstract_inverted_index.data. | 89 |
| abstract_inverted_index.first | 110 |
| abstract_inverted_index.graph | 68 |
| abstract_inverted_index.great | 4 |
| abstract_inverted_index.image | 1 |
| abstract_inverted_index.input | 164 |
| abstract_inverted_index.label | 181 |
| abstract_inverted_index.local | 148 |
| abstract_inverted_index.shows | 3 |
| abstract_inverted_index.their | 83 |
| abstract_inverted_index.these | 92 |
| abstract_inverted_index.using | 118, 141 |
| abstract_inverted_index.which | 222 |
| abstract_inverted_index.Indian | 205 |
| abstract_inverted_index.Pines, | 206 |
| abstract_inverted_index.Scene, | 212 |
| abstract_inverted_index.better | 224 |
| abstract_inverted_index.called | 106 |
| abstract_inverted_index.detail | 50 |
| abstract_inverted_index.fusion | 161 |
| abstract_inverted_index.global | 150 |
| abstract_inverted_index.handle | 87 |
| abstract_inverted_index.method | 203 |
| abstract_inverted_index.neural | 44, 69 |
| abstract_inverted_index.obtain | 126, 169 |
| abstract_inverted_index.remote | 9 |
| abstract_inverted_index.suffer | 48 |
| abstract_inverted_index.virtue | 81 |
| abstract_inverted_index.97.35%, | 216 |
| abstract_inverted_index.98.46%, | 220 |
| abstract_inverted_index.99.40%, | 217 |
| abstract_inverted_index.99.64%, | 218 |
| abstract_inverted_index.Center, | 209 |
| abstract_inverted_index.ChebNet | 145 |
| abstract_inverted_index.Kennedy | 207 |
| abstract_inverted_index.ability | 85 |
| abstract_inverted_index.address | 91 |
| abstract_inverted_index.average | 197 |
| abstract_inverted_index.between | 29 |
| abstract_inverted_index.complex | 27 |
| abstract_inverted_index.extract | 147 |
| abstract_inverted_index.feature | 53 |
| abstract_inverted_index.impetus | 76 |
| abstract_inverted_index.matrix. | 134 |
| abstract_inverted_index.methods | 47, 56, 72 |
| abstract_inverted_index.network | 45, 70, 102, 109 |
| abstract_inverted_index.overall | 198 |
| abstract_inverted_index.primary | 128 |
| abstract_inverted_index.propose | 100 |
| abstract_inverted_index.provide | 73 |
| abstract_inverted_index.quality | 64 |
| abstract_inverted_index.reaches | 215 |
| abstract_inverted_index.results | 193 |
| abstract_inverted_index.sensing | 10 |
| abstract_inverted_index.spatial | 19, 32 |
| abstract_inverted_index.through | 159 |
| abstract_inverted_index.Botswana | 214 |
| abstract_inverted_index.Finally, | 154 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.accuracy | 199 |
| abstract_inverted_index.accurate | 40 |
| abstract_inverted_index.compared | 225 |
| abstract_inverted_index.embedded | 185 |
| abstract_inverted_index.extracts | 111 |
| abstract_inverted_index.features | 33, 115, 129, 157 |
| abstract_inverted_index.followed | 122 |
| abstract_inverted_index.improved | 142 |
| abstract_inverted_index.methods. | 229 |
| abstract_inverted_index.obtained | 158, 200 |
| abstract_inverted_index.parallel | 104, 137 |
| abstract_inverted_index.problem, | 179 |
| abstract_inverted_index.quantity | 62 |
| abstract_inverted_index.results. | 172 |
| abstract_inverted_index.spectral | 15, 30 |
| abstract_inverted_index.strategy | 162 |
| abstract_inverted_index.PGNN-Net. | 107 |
| abstract_inverted_index.addition, | 174 |
| abstract_inverted_index.adjacency | 133 |
| abstract_inverted_index.advantage | 96 |
| abstract_inverted_index.alleviate | 176 |
| abstract_inverted_index.analysis, | 121 |
| abstract_inverted_index.component | 120 |
| abstract_inverted_index.excellent | 84 |
| abstract_inverted_index.features, | 152 |
| abstract_inverted_index.function. | 190 |
| abstract_inverted_index.irregular | 88 |
| abstract_inverted_index.potential | 5 |
| abstract_inverted_index.principal | 119 |
| abstract_inverted_index.smoothing | 182 |
| abstract_inverted_index.technique | 183 |
| abstract_inverted_index.University | 211 |
| abstract_inverted_index.challenges | 37, 93 |
| abstract_inverted_index.classifier | 167 |
| abstract_inverted_index.normalized | 132 |
| abstract_inverted_index.(CNN)-based | 46 |
| abstract_inverted_index.(GNN)-based | 71 |
| abstract_inverted_index.Traditional | 42 |
| abstract_inverted_index.application | 7 |
| abstract_inverted_index.constructed | 140 |
| abstract_inverted_index.extraction; | 54 |
| abstract_inverted_index.information | 16 |
| abstract_inverted_index.resolution. | 20 |
| abstract_inverted_index.architecture | 138 |
| abstract_inverted_index.experimental | 192 |
| abstract_inverted_index.over-fitting | 178 |
| abstract_inverted_index.relationship | 28 |
| abstract_inverted_index.Hyperspectral | 0 |
| abstract_inverted_index.convolutional | 43 |
| abstract_inverted_index.cross-entropy | 188 |
| abstract_inverted_index.nonlinearity, | 25 |
| abstract_inverted_index.preprocessing | 124 |
| abstract_inverted_index.respectively, | 221 |
| abstract_inverted_index.respectively. | 153 |
| abstract_inverted_index.classification | 79, 171 |
| abstract_inverted_index.discriminative | 156 |
| abstract_inverted_index.classification. | 41 |
| abstract_inverted_index.dimensionality, | 24 |
| abstract_inverted_index.spatial-spectral | 114, 151 |
| abstract_inverted_index.state-of-the-art | 228 |
| abstract_inverted_index.Transformer-based | 55 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.86972289 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |