Phaedrus: Predicting Dynamic Application Behavior with Lightweight Generative Models and LLMs Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.06994
Application profiling is an indispensable technique for many software development tasks, such as code and memory layout optimizations, where optimization decisions are tailored to specific program profiles. Unfortunately, modern application codebases exhibit highly variant behavior across different inputs, creating challenges for conventional profiling approaches that rely on a single representative execution instance. In this paper, we propose \textbf{Phaedrus}, a new \textit{compiler-assisted deep learning framework} designed to predict dynamic program behaviors across varied execution instances, specifically focusing on dynamic function call prediction.Such predicted call sequences are then used for producing optimized code pertinent to a given input. Traditional profile-guided optimization methods struggle with the input-dependent variability of modern applications, where profiling on different inputs yields divergent application behaviors. To address this, Phaedrus proposes two new approaches: \textit{Application Behavior Synthesis}, a profile-less approach where Large Language Models (LLMs) directly infer dynamic functions based on source code \& static compiler analysis, bypassing the need for traditional profiling, and \textit{Application Profile Generalization}, which uses generative models trained on compressed and augmented \textit{Whole Program Path} (WPP) based function profiles to predict application behavior under unseen inputs. Our experiments show that \textit{Phaedrus} can achieve upto $10^7X$ reduction in WPP function profile sizes, can predict most frequently executed functions that cover upto 85-99\% of the execution time, along with an average of 13.19\% (upto 65\%) reduction in application binary size, and an average of 6.08\% (upto 20\%) performance improvement over the traditional profile-guided optimization, without any execution.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.06994
- https://arxiv.org/pdf/2412.06994
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405254837
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405254837Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.06994Digital Object Identifier
- Title
-
Phaedrus: Predicting Dynamic Application Behavior with Lightweight Generative Models and LLMsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-09Full publication date if available
- Authors
-
Bodhisatwa Chatterjee, Neeraj Jadhav, Sharjeel Khan, Santosh PandeList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.06994Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.06994Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.06994Direct OA link when available
- Concepts
-
Generative grammar, Computer science, Generative model, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405254837 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.06994 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.06994 |
| ids.openalex | https://openalex.org/W4405254837 |
| fwci | |
| type | preprint |
| title | Phaedrus: Predicting Dynamic Application Behavior with Lightweight Generative Models and LLMs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10215 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.934499979019165 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Semantic Web and Ontologies |
| topics[1].id | https://openalex.org/T12720 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9028000235557556 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3312 |
| topics[1].subfield.display_name | Sociology and Political Science |
| topics[1].display_name | Multimedia Communication and Technology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39890363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7601996660232544 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[0].display_name | Generative grammar |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5965513586997986 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C167966045 |
| concepts[2].level | 3 |
| concepts[2].score | 0.42773938179016113 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[2].display_name | Generative model |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.2872454524040222 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/generative-grammar |
| keywords[0].score | 0.7601996660232544 |
| keywords[0].display_name | Generative grammar |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5965513586997986 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/generative-model |
| keywords[2].score | 0.42773938179016113 |
| keywords[2].display_name | Generative model |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.2872454524040222 |
| keywords[3].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.06994 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.06994 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.06994 |
| locations[1].id | doi:10.48550/arxiv.2412.06994 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.06994 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5080183088 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3098-6256 |
| authorships[0].author.display_name | Bodhisatwa Chatterjee |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chatterjee, Bodhisatwa |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5115087507 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Neeraj Jadhav |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jadhav, Neeraj |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5009383888 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4563-4619 |
| authorships[2].author.display_name | Sharjeel Khan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Khan, Sharjeel |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5061235810 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6723-8062 |
| authorships[3].author.display_name | Santosh Pande |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Pande, Santosh |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.06994 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-12-12T00:00:00 |
| display_name | Phaedrus: Predicting Dynamic Application Behavior with Lightweight Generative Models and LLMs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10215 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.934499979019165 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Semantic Web and Ontologies |
| related_works | https://openalex.org/W4365211920, https://openalex.org/W3014948380, https://openalex.org/W4391584540, https://openalex.org/W4380551139, https://openalex.org/W4317695495, https://openalex.org/W4395044357, https://openalex.org/W4287117424, https://openalex.org/W4387506531, https://openalex.org/W2087346071, https://openalex.org/W2967848559 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.06994 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.06994 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.06994 |
| primary_location.id | pmh:oai:arXiv.org:2412.06994 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.06994 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.06994 |
| publication_date | 2024-12-09 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 47, 58, 93, 128 |
| abstract_inverted_index.In | 52 |
| abstract_inverted_index.To | 117 |
| abstract_inverted_index.an | 3, 212, 224 |
| abstract_inverted_index.as | 12 |
| abstract_inverted_index.in | 191, 219 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.of | 105, 206, 214, 226 |
| abstract_inverted_index.on | 46, 76, 110, 141, 163 |
| abstract_inverted_index.to | 23, 65, 92, 174 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.Our | 181 |
| abstract_inverted_index.WPP | 192 |
| abstract_inverted_index.and | 14, 154, 165, 223 |
| abstract_inverted_index.any | 238 |
| abstract_inverted_index.are | 21, 84 |
| abstract_inverted_index.can | 186, 196 |
| abstract_inverted_index.for | 6, 40, 87, 151 |
| abstract_inverted_index.new | 59, 123 |
| abstract_inverted_index.the | 102, 149, 207, 233 |
| abstract_inverted_index.two | 122 |
| abstract_inverted_index.call | 79, 82 |
| abstract_inverted_index.code | 13, 90, 143 |
| abstract_inverted_index.deep | 61 |
| abstract_inverted_index.many | 7 |
| abstract_inverted_index.most | 198 |
| abstract_inverted_index.need | 150 |
| abstract_inverted_index.over | 232 |
| abstract_inverted_index.rely | 45 |
| abstract_inverted_index.show | 183 |
| abstract_inverted_index.such | 11 |
| abstract_inverted_index.that | 44, 184, 202 |
| abstract_inverted_index.then | 85 |
| abstract_inverted_index.this | 53 |
| abstract_inverted_index.upto | 188, 204 |
| abstract_inverted_index.used | 86 |
| abstract_inverted_index.uses | 159 |
| abstract_inverted_index.with | 101, 211 |
| abstract_inverted_index.(WPP) | 170 |
| abstract_inverted_index.(upto | 216, 228 |
| abstract_inverted_index.20\%) | 229 |
| abstract_inverted_index.65\%) | 217 |
| abstract_inverted_index.Large | 132 |
| abstract_inverted_index.Path} | 169 |
| abstract_inverted_index.along | 210 |
| abstract_inverted_index.based | 140, 171 |
| abstract_inverted_index.cover | 203 |
| abstract_inverted_index.given | 94 |
| abstract_inverted_index.infer | 137 |
| abstract_inverted_index.size, | 222 |
| abstract_inverted_index.this, | 119 |
| abstract_inverted_index.time, | 209 |
| abstract_inverted_index.under | 178 |
| abstract_inverted_index.where | 18, 108, 131 |
| abstract_inverted_index.which | 158 |
| abstract_inverted_index.(LLMs) | 135 |
| abstract_inverted_index.6.08\% | 227 |
| abstract_inverted_index.Models | 134 |
| abstract_inverted_index.\& | 144 |
| abstract_inverted_index.across | 35, 70 |
| abstract_inverted_index.binary | 221 |
| abstract_inverted_index.highly | 32 |
| abstract_inverted_index.input. | 95 |
| abstract_inverted_index.inputs | 112 |
| abstract_inverted_index.layout | 16 |
| abstract_inverted_index.memory | 15 |
| abstract_inverted_index.models | 161 |
| abstract_inverted_index.modern | 28, 106 |
| abstract_inverted_index.paper, | 54 |
| abstract_inverted_index.single | 48 |
| abstract_inverted_index.sizes, | 195 |
| abstract_inverted_index.source | 142 |
| abstract_inverted_index.static | 145 |
| abstract_inverted_index.tasks, | 10 |
| abstract_inverted_index.unseen | 179 |
| abstract_inverted_index.varied | 71 |
| abstract_inverted_index.yields | 113 |
| abstract_inverted_index.$10^7X$ | 189 |
| abstract_inverted_index.13.19\% | 215 |
| abstract_inverted_index.85-99\% | 205 |
| abstract_inverted_index.Profile | 156 |
| abstract_inverted_index.Program | 168 |
| abstract_inverted_index.achieve | 187 |
| abstract_inverted_index.address | 118 |
| abstract_inverted_index.average | 213, 225 |
| abstract_inverted_index.dynamic | 67, 77, 138 |
| abstract_inverted_index.exhibit | 31 |
| abstract_inverted_index.inputs, | 37 |
| abstract_inverted_index.inputs. | 180 |
| abstract_inverted_index.methods | 99 |
| abstract_inverted_index.predict | 66, 175, 197 |
| abstract_inverted_index.profile | 194 |
| abstract_inverted_index.program | 25, 68 |
| abstract_inverted_index.propose | 56 |
| abstract_inverted_index.trained | 162 |
| abstract_inverted_index.variant | 33 |
| abstract_inverted_index.without | 237 |
| abstract_inverted_index.Behavior | 126 |
| abstract_inverted_index.Language | 133 |
| abstract_inverted_index.Phaedrus | 120 |
| abstract_inverted_index.approach | 130 |
| abstract_inverted_index.behavior | 34, 177 |
| abstract_inverted_index.compiler | 146 |
| abstract_inverted_index.creating | 38 |
| abstract_inverted_index.designed | 64 |
| abstract_inverted_index.directly | 136 |
| abstract_inverted_index.executed | 200 |
| abstract_inverted_index.focusing | 75 |
| abstract_inverted_index.function | 78, 172, 193 |
| abstract_inverted_index.learning | 62 |
| abstract_inverted_index.profiles | 173 |
| abstract_inverted_index.proposes | 121 |
| abstract_inverted_index.software | 8 |
| abstract_inverted_index.specific | 24 |
| abstract_inverted_index.struggle | 100 |
| abstract_inverted_index.tailored | 22 |
| abstract_inverted_index.analysis, | 147 |
| abstract_inverted_index.augmented | 166 |
| abstract_inverted_index.behaviors | 69 |
| abstract_inverted_index.bypassing | 148 |
| abstract_inverted_index.codebases | 30 |
| abstract_inverted_index.decisions | 20 |
| abstract_inverted_index.different | 36, 111 |
| abstract_inverted_index.divergent | 114 |
| abstract_inverted_index.execution | 50, 72, 208 |
| abstract_inverted_index.functions | 139, 201 |
| abstract_inverted_index.instance. | 51 |
| abstract_inverted_index.optimized | 89 |
| abstract_inverted_index.pertinent | 91 |
| abstract_inverted_index.predicted | 81 |
| abstract_inverted_index.producing | 88 |
| abstract_inverted_index.profiles. | 26 |
| abstract_inverted_index.profiling | 1, 42, 109 |
| abstract_inverted_index.reduction | 190, 218 |
| abstract_inverted_index.sequences | 83 |
| abstract_inverted_index.technique | 5 |
| abstract_inverted_index.approaches | 43 |
| abstract_inverted_index.behaviors. | 116 |
| abstract_inverted_index.challenges | 39 |
| abstract_inverted_index.compressed | 164 |
| abstract_inverted_index.execution. | 239 |
| abstract_inverted_index.framework} | 63 |
| abstract_inverted_index.frequently | 199 |
| abstract_inverted_index.generative | 160 |
| abstract_inverted_index.instances, | 73 |
| abstract_inverted_index.profiling, | 153 |
| abstract_inverted_index.Application | 0 |
| abstract_inverted_index.Synthesis}, | 127 |
| abstract_inverted_index.Traditional | 96 |
| abstract_inverted_index.application | 29, 115, 176, 220 |
| abstract_inverted_index.approaches: | 124 |
| abstract_inverted_index.development | 9 |
| abstract_inverted_index.experiments | 182 |
| abstract_inverted_index.improvement | 231 |
| abstract_inverted_index.performance | 230 |
| abstract_inverted_index.traditional | 152, 234 |
| abstract_inverted_index.variability | 104 |
| abstract_inverted_index.conventional | 41 |
| abstract_inverted_index.optimization | 19, 98 |
| abstract_inverted_index.profile-less | 129 |
| abstract_inverted_index.specifically | 74 |
| abstract_inverted_index.\textit{Whole | 167 |
| abstract_inverted_index.applications, | 107 |
| abstract_inverted_index.indispensable | 4 |
| abstract_inverted_index.optimization, | 236 |
| abstract_inverted_index.Unfortunately, | 27 |
| abstract_inverted_index.optimizations, | 17 |
| abstract_inverted_index.profile-guided | 97, 235 |
| abstract_inverted_index.representative | 49 |
| abstract_inverted_index.input-dependent | 103 |
| abstract_inverted_index.prediction.Such | 80 |
| abstract_inverted_index.Generalization}, | 157 |
| abstract_inverted_index.\textit{Phaedrus} | 185 |
| abstract_inverted_index.\textbf{Phaedrus}, | 57 |
| abstract_inverted_index.\textit{Application | 125, 155 |
| abstract_inverted_index.\textit{compiler-assisted | 60 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |