Phase diagram construction and prediction method based on machine learning algorithms Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.jmrt.2025.03.065
Phase diagram, which is known as the “compass” and “map” of materials research, plays a guiding role in the material design and development. Conventional CALPHAD method could provide the detailed information on the phase equilibria via the assessment of thermodynamics model parameters. However, CALPHAD assessment for the multi-component systems can be particularly challenging due to the significant time costs involved and lack of experimental data, especially when attempting to predict the phase diagrams of multi-component systems. The fast-growing machine learning technique opens a new pathway to deal with tons of data and parameters. Meanwhile, the CALPHAD method has accumulated abundant high-quality phase diagram data who would be the perfect training data for the machine learning algorithms. In the present work, a phase diagram prediction method which integrates machine learning algorithms with CALPHAD descriptors is proposed. The present study establishes and train machine learning models to predict phase-type and solvus temperature of the materials. Using training datasets obtained from the CALPHAD method, we combine the total Gibbs energy and magnetic descriptor with training set to predict the isothermal sections of Cu–Co–Ni and Fe–Cu–Co ternary systems. The results indicate that the elevated temperatures not only enhance the solubility of Co, Ni, and Cu in intermetallic compounds but also facilitate the formation of eutectic precipitates (γFe+αCo). This methodology can efficiently predict the phase diagram of material system with higher number of components by training the phase diagram data of lower ones, thereby providing a new strategy to complement the CALPHAD with machine learning technique and extend the application of CALPHAD method to the advanced materials including high entropy alloys and functional materials.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jmrt.2025.03.065
- OA Status
- gold
- Cited By
- 1
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408457925
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408457925Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jmrt.2025.03.065Digital Object Identifier
- Title
-
Phase diagram construction and prediction method based on machine learning algorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-14Full publication date if available
- Authors
-
Shengkun Xi, Jiahui Li, Longke Bao, Rongpei Shi, Haijun Zhang, Xiaoyu Chong, Zhou Li, Cuiping Wang, Xingjun LiuList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jmrt.2025.03.065Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.jmrt.2025.03.065Direct OA link when available
- Concepts
-
Phase diagram, Materials science, Phase (matter), Algorithm, CALPHAD, Diagram, Machine learning, Artificial intelligence, Computer science, Physics, Quantum mechanics, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408457925 |
|---|---|
| doi | https://doi.org/10.1016/j.jmrt.2025.03.065 |
| ids.doi | https://doi.org/10.1016/j.jmrt.2025.03.065 |
| ids.openalex | https://openalex.org/W4408457925 |
| fwci | 1.58545715 |
| type | article |
| title | Phase diagram construction and prediction method based on machine learning algorithms |
| biblio.issue | |
| biblio.volume | 36 |
| biblio.last_page | 1929 |
| biblio.first_page | 1917 |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9555000066757202 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| is_xpac | False |
| apc_list.value | 1300 |
| apc_list.currency | USD |
| apc_list.value_usd | 1300 |
| apc_paid.value | 1300 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1300 |
| concepts[0].id | https://openalex.org/C85906118 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7730666399002075 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q186693 |
| concepts[0].display_name | Phase diagram |
| concepts[1].id | https://openalex.org/C192562407 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7013208866119385 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[1].display_name | Materials science |
| concepts[2].id | https://openalex.org/C44280652 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5533895492553711 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q104837 |
| concepts[2].display_name | Phase (matter) |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5517675876617432 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C93501709 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5182461738586426 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4035558 |
| concepts[4].display_name | CALPHAD |
| concepts[5].id | https://openalex.org/C186399060 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46605122089385986 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q959962 |
| concepts[5].display_name | Diagram |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.43799182772636414 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.362343430519104 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2869834899902344 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.07261106371879578 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| concepts[11].id | https://openalex.org/C77088390 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[11].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/phase-diagram |
| keywords[0].score | 0.7730666399002075 |
| keywords[0].display_name | Phase diagram |
| keywords[1].id | https://openalex.org/keywords/materials-science |
| keywords[1].score | 0.7013208866119385 |
| keywords[1].display_name | Materials science |
| keywords[2].id | https://openalex.org/keywords/phase |
| keywords[2].score | 0.5533895492553711 |
| keywords[2].display_name | Phase (matter) |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.5517675876617432 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/calphad |
| keywords[4].score | 0.5182461738586426 |
| keywords[4].display_name | CALPHAD |
| keywords[5].id | https://openalex.org/keywords/diagram |
| keywords[5].score | 0.46605122089385986 |
| keywords[5].display_name | Diagram |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.43799182772636414 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.362343430519104 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.2869834899902344 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.07261106371879578 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1016/j.jmrt.2025.03.065 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2765010971 |
| locations[0].source.issn | 2214-0697, 2238-7854 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2214-0697 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Materials Research and Technology |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Materials Research and Technology |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jmrt.2025.03.065 |
| locations[1].id | pmh:oai:doaj.org/article:4b3682deb3ed4176bc1b0277e548ebed |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Materials Research and Technology, Vol 36, Iss , Pp 1917-1929 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/4b3682deb3ed4176bc1b0277e548ebed |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5051062155 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-4917-5759 |
| authorships[0].author.display_name | Shengkun Xi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shengkun Xi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100462969 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2746-5919 |
| authorships[1].author.display_name | Jiahui Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiahui Li |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014400391 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Longke Bao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Longke Bao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5082022175 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5007-4249 |
| authorships[3].author.display_name | Rongpei Shi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rongpei Shi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100458470 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2289-5135 |
| authorships[4].author.display_name | Haijun Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Haijun Zhang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5046274150 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6558-2409 |
| authorships[5].author.display_name | Xiaoyu Chong |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xiaoyu Chong |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5069800102 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6988-2158 |
| authorships[6].author.display_name | Zhou Li |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhou Li |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100695155 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9493-5565 |
| authorships[7].author.display_name | Cuiping Wang |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Cuiping Wang |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5078220443 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-3015-8525 |
| authorships[8].author.display_name | Xingjun Liu |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Xingjun Liu |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.jmrt.2025.03.065 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Phase diagram construction and prediction method based on machine learning algorithms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9555000066757202 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W2068891322, https://openalex.org/W2010340427, https://openalex.org/W2356207320, https://openalex.org/W2051095692, https://openalex.org/W2057280924, https://openalex.org/W2376195814, https://openalex.org/W3107090700, https://openalex.org/W2270355337, https://openalex.org/W2312884573, https://openalex.org/W2257193964 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.jmrt.2025.03.065 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2765010971 |
| best_oa_location.source.issn | 2214-0697, 2238-7854 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2214-0697 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Materials Research and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Materials Research and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jmrt.2025.03.065 |
| primary_location.id | doi:10.1016/j.jmrt.2025.03.065 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2765010971 |
| primary_location.source.issn | 2214-0697, 2238-7854 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2214-0697 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Materials Research and Technology |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Materials Research and Technology |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jmrt.2025.03.065 |
| publication_date | 2025-03-14 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4214690716, https://openalex.org/W6851208312, https://openalex.org/W6850617094, https://openalex.org/W4220695168, https://openalex.org/W4308153371, https://openalex.org/W6850008422, https://openalex.org/W2090955312, https://openalex.org/W2609059410, https://openalex.org/W3185900217, https://openalex.org/W3031712050, https://openalex.org/W1972996470, https://openalex.org/W2087640469, https://openalex.org/W2810295309, https://openalex.org/W2799496735, https://openalex.org/W3126714751, https://openalex.org/W6805312886, https://openalex.org/W6804284702, https://openalex.org/W3195056591, https://openalex.org/W3084235614, https://openalex.org/W4221018734, https://openalex.org/W3211643082, https://openalex.org/W2164844441, https://openalex.org/W1990855332, https://openalex.org/W1986939757, https://openalex.org/W2020159991, https://openalex.org/W2015615234, https://openalex.org/W2102184039, https://openalex.org/W2937603321, https://openalex.org/W4296504131, https://openalex.org/W3043996585, https://openalex.org/W2077451992, https://openalex.org/W1974273741, https://openalex.org/W3023706698, https://openalex.org/W3112259279, https://openalex.org/W4322495330, https://openalex.org/W4205339008, https://openalex.org/W4360597087, https://openalex.org/W4362696518, https://openalex.org/W3215095412, https://openalex.org/W4381802401 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 14, 82, 120, 240 |
| abstract_inverted_index.Cu | 200 |
| abstract_inverted_index.In | 116 |
| abstract_inverted_index.as | 5 |
| abstract_inverted_index.be | 50, 106 |
| abstract_inverted_index.by | 229 |
| abstract_inverted_index.in | 17, 201 |
| abstract_inverted_index.is | 3, 133 |
| abstract_inverted_index.of | 10, 38, 62, 73, 89, 150, 178, 196, 209, 221, 227, 235, 255 |
| abstract_inverted_index.on | 31 |
| abstract_inverted_index.to | 54, 68, 85, 144, 173, 243, 258 |
| abstract_inverted_index.we | 161 |
| abstract_inverted_index.Co, | 197 |
| abstract_inverted_index.Ni, | 198 |
| abstract_inverted_index.The | 76, 135, 184 |
| abstract_inverted_index.and | 8, 21, 60, 91, 139, 147, 167, 180, 199, 251, 266 |
| abstract_inverted_index.but | 204 |
| abstract_inverted_index.can | 49, 215 |
| abstract_inverted_index.due | 53 |
| abstract_inverted_index.for | 45, 111 |
| abstract_inverted_index.has | 97 |
| abstract_inverted_index.new | 83, 241 |
| abstract_inverted_index.not | 191 |
| abstract_inverted_index.set | 172 |
| abstract_inverted_index.the | 6, 18, 28, 32, 36, 46, 55, 70, 94, 107, 112, 117, 151, 158, 163, 175, 188, 194, 207, 218, 231, 245, 253, 259 |
| abstract_inverted_index.via | 35 |
| abstract_inverted_index.who | 104 |
| abstract_inverted_index.This | 213 |
| abstract_inverted_index.also | 205 |
| abstract_inverted_index.data | 90, 103, 110, 234 |
| abstract_inverted_index.deal | 86 |
| abstract_inverted_index.from | 157 |
| abstract_inverted_index.high | 263 |
| abstract_inverted_index.lack | 61 |
| abstract_inverted_index.only | 192 |
| abstract_inverted_index.role | 16 |
| abstract_inverted_index.that | 187 |
| abstract_inverted_index.time | 57 |
| abstract_inverted_index.tons | 88 |
| abstract_inverted_index.when | 66 |
| abstract_inverted_index.with | 87, 130, 170, 224, 247 |
| abstract_inverted_index.Gibbs | 165 |
| abstract_inverted_index.Phase | 0 |
| abstract_inverted_index.Using | 153 |
| abstract_inverted_index.costs | 58 |
| abstract_inverted_index.could | 26 |
| abstract_inverted_index.data, | 64 |
| abstract_inverted_index.known | 4 |
| abstract_inverted_index.lower | 236 |
| abstract_inverted_index.model | 40 |
| abstract_inverted_index.ones, | 237 |
| abstract_inverted_index.opens | 81 |
| abstract_inverted_index.phase | 33, 71, 101, 121, 219, 232 |
| abstract_inverted_index.plays | 13 |
| abstract_inverted_index.study | 137 |
| abstract_inverted_index.total | 164 |
| abstract_inverted_index.train | 140 |
| abstract_inverted_index.which | 2, 125 |
| abstract_inverted_index.work, | 119 |
| abstract_inverted_index.would | 105 |
| abstract_inverted_index.alloys | 265 |
| abstract_inverted_index.design | 20 |
| abstract_inverted_index.energy | 166 |
| abstract_inverted_index.extend | 252 |
| abstract_inverted_index.higher | 225 |
| abstract_inverted_index.method | 25, 96, 124, 257 |
| abstract_inverted_index.models | 143 |
| abstract_inverted_index.number | 226 |
| abstract_inverted_index.solvus | 148 |
| abstract_inverted_index.system | 223 |
| abstract_inverted_index.CALPHAD | 24, 43, 95, 131, 159, 246, 256 |
| abstract_inverted_index.combine | 162 |
| abstract_inverted_index.diagram | 102, 122, 220, 233 |
| abstract_inverted_index.enhance | 193 |
| abstract_inverted_index.entropy | 264 |
| abstract_inverted_index.guiding | 15 |
| abstract_inverted_index.machine | 78, 113, 127, 141, 248 |
| abstract_inverted_index.method, | 160 |
| abstract_inverted_index.pathway | 84 |
| abstract_inverted_index.perfect | 108 |
| abstract_inverted_index.predict | 69, 145, 174, 217 |
| abstract_inverted_index.present | 118, 136 |
| abstract_inverted_index.provide | 27 |
| abstract_inverted_index.results | 185 |
| abstract_inverted_index.systems | 48 |
| abstract_inverted_index.ternary | 182 |
| abstract_inverted_index.thereby | 238 |
| abstract_inverted_index.However, | 42 |
| abstract_inverted_index.abundant | 99 |
| abstract_inverted_index.advanced | 260 |
| abstract_inverted_index.datasets | 155 |
| abstract_inverted_index.detailed | 29 |
| abstract_inverted_index.diagram, | 1 |
| abstract_inverted_index.diagrams | 72 |
| abstract_inverted_index.elevated | 189 |
| abstract_inverted_index.eutectic | 210 |
| abstract_inverted_index.indicate | 186 |
| abstract_inverted_index.involved | 59 |
| abstract_inverted_index.learning | 79, 114, 128, 142, 249 |
| abstract_inverted_index.magnetic | 168 |
| abstract_inverted_index.material | 19, 222 |
| abstract_inverted_index.obtained | 156 |
| abstract_inverted_index.sections | 177 |
| abstract_inverted_index.strategy | 242 |
| abstract_inverted_index.systems. | 75, 183 |
| abstract_inverted_index.training | 109, 154, 171, 230 |
| abstract_inverted_index.compounds | 203 |
| abstract_inverted_index.formation | 208 |
| abstract_inverted_index.including | 262 |
| abstract_inverted_index.materials | 11, 261 |
| abstract_inverted_index.proposed. | 134 |
| abstract_inverted_index.providing | 239 |
| abstract_inverted_index.research, | 12 |
| abstract_inverted_index.technique | 80, 250 |
| abstract_inverted_index.“map” | 9 |
| abstract_inverted_index.Meanwhile, | 93 |
| abstract_inverted_index.algorithms | 129 |
| abstract_inverted_index.assessment | 37, 44 |
| abstract_inverted_index.attempting | 67 |
| abstract_inverted_index.complement | 244 |
| abstract_inverted_index.components | 228 |
| abstract_inverted_index.descriptor | 169 |
| abstract_inverted_index.equilibria | 34 |
| abstract_inverted_index.especially | 65 |
| abstract_inverted_index.facilitate | 206 |
| abstract_inverted_index.functional | 267 |
| abstract_inverted_index.integrates | 126 |
| abstract_inverted_index.isothermal | 176 |
| abstract_inverted_index.materials. | 152, 268 |
| abstract_inverted_index.phase-type | 146 |
| abstract_inverted_index.prediction | 123 |
| abstract_inverted_index.solubility | 195 |
| abstract_inverted_index.accumulated | 98 |
| abstract_inverted_index.algorithms. | 115 |
| abstract_inverted_index.application | 254 |
| abstract_inverted_index.challenging | 52 |
| abstract_inverted_index.descriptors | 132 |
| abstract_inverted_index.efficiently | 216 |
| abstract_inverted_index.establishes | 138 |
| abstract_inverted_index.information | 30 |
| abstract_inverted_index.methodology | 214 |
| abstract_inverted_index.parameters. | 41, 92 |
| abstract_inverted_index.significant | 56 |
| abstract_inverted_index.temperature | 149 |
| abstract_inverted_index.(γFe+αCo). | 212 |
| abstract_inverted_index.Conventional | 23 |
| abstract_inverted_index.Cu–Co–Ni | 179 |
| abstract_inverted_index.Fe–Cu–Co | 181 |
| abstract_inverted_index.development. | 22 |
| abstract_inverted_index.experimental | 63 |
| abstract_inverted_index.fast-growing | 77 |
| abstract_inverted_index.high-quality | 100 |
| abstract_inverted_index.particularly | 51 |
| abstract_inverted_index.precipitates | 211 |
| abstract_inverted_index.temperatures | 190 |
| abstract_inverted_index.intermetallic | 202 |
| abstract_inverted_index.“compass” | 7 |
| abstract_inverted_index.thermodynamics | 39 |
| abstract_inverted_index.multi-component | 47, 74 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.68278599 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |