Phase of firing does not reflect temporal order in sequence memory of humans and recurrent neural networks Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1101/2022.09.25.509370
A prominent theory proposes that the temporal order of a sequence of items held in memory is reflected in ordered firing of neurons at different phases of theta oscillations 1 . We probe this theory by directly measuring single neuron activity (1420 neurons) and local field potentials (LFP, 921 channels) in the medial temporal lobe of 16 epilepsy patients performing a working memory task for temporal order. We observe theta oscillations and preferential firing of single neurons at theta phase during memory maintenance. We find that - depending on memory performance - phase of firing is related to item position within a sequence. However, in contrast to the theory, phase order did not match item order. To investigate underlying mechanisms, we subsequently trained recurrent neural networks (RNNs) to perform an analogous task. Similar to recorded neural activity, we show that RNNs generate theta oscillations during memory maintenance. Importantly, model neurons exhibit theta phase-dependent firing related to item position, where phase of firing again did not match item order. Instead, we observed a mechanistic link between phase order, stimulus timing and oscillation frequency - a relationship we subsequently confirmed in our neural recordings. Taken together, in both biological and artificial neural networks we provide validating evidence for the role of phase-of-firing in memory processing while at the same time challenging a long-held theory about the functional role of spiking and oscillations in sequence memory.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2022.09.25.509370
- https://www.biorxiv.org/content/biorxiv/early/2022/09/27/2022.09.25.509370.full.pdf
- OA Status
- green
- Cited By
- 10
- References
- 65
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4297338429
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4297338429Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2022.09.25.509370Digital Object Identifier
- Title
-
Phase of firing does not reflect temporal order in sequence memory of humans and recurrent neural networksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-27Full publication date if available
- Authors
-
S Liebe, Johannes Niediek, Matthijs Pals, Thomas P. Reber, Jenny Faber, Jan Bostroem, Christian E. Elger, Jakob H. Macke, Florian MormannList of authors in order
- Landing page
-
https://doi.org/10.1101/2022.09.25.509370Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2022/09/27/2022.09.25.509370.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2022/09/27/2022.09.25.509370.full.pdfDirect OA link when available
- Concepts
-
Neuroscience, Local field potential, Stimulus (psychology), Temporal lobe, Neural ensemble, Recurrent neural network, Artificial neural network, Computer science, Sequence (biology), Neuron, Oscillation (cell signaling), Psychology, Artificial intelligence, Cognitive psychology, Epilepsy, Biology, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 5, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
65Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4297338429 |
|---|---|
| doi | https://doi.org/10.1101/2022.09.25.509370 |
| ids.doi | https://doi.org/10.1101/2022.09.25.509370 |
| ids.openalex | https://openalex.org/W4297338429 |
| fwci | 1.60520913 |
| type | preprint |
| title | Phase of firing does not reflect temporal order in sequence memory of humans and recurrent neural networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10581 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Neural dynamics and brain function |
| topics[1].id | https://openalex.org/T10448 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Memory and Neural Mechanisms |
| topics[2].id | https://openalex.org/T10077 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9987999796867371 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2804 |
| topics[2].subfield.display_name | Cellular and Molecular Neuroscience |
| topics[2].display_name | Neuroscience and Neuropharmacology Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C169760540 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6827379465103149 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[0].display_name | Neuroscience |
| concepts[1].id | https://openalex.org/C117838684 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5724688172340393 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q533483 |
| concepts[1].display_name | Local field potential |
| concepts[2].id | https://openalex.org/C2779918689 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5679326057434082 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3771842 |
| concepts[2].display_name | Stimulus (psychology) |
| concepts[3].id | https://openalex.org/C2781099131 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5277909636497498 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q744385 |
| concepts[3].display_name | Temporal lobe |
| concepts[4].id | https://openalex.org/C187782996 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5080158710479736 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9390548 |
| concepts[4].display_name | Neural ensemble |
| concepts[5].id | https://openalex.org/C147168706 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4938707947731018 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[5].display_name | Recurrent neural network |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4919304847717285 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4795472323894501 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C2778112365 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4712389409542084 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[8].display_name | Sequence (biology) |
| concepts[9].id | https://openalex.org/C2778794669 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43870770931243896 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q43054 |
| concepts[9].display_name | Neuron |
| concepts[10].id | https://openalex.org/C2778439541 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42630618810653687 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7106412 |
| concepts[10].display_name | Oscillation (cell signaling) |
| concepts[11].id | https://openalex.org/C15744967 |
| concepts[11].level | 0 |
| concepts[11].score | 0.37886857986450195 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[11].display_name | Psychology |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3404079079627991 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C180747234 |
| concepts[13].level | 1 |
| concepts[13].score | 0.20419150590896606 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[13].display_name | Cognitive psychology |
| concepts[14].id | https://openalex.org/C2778186239 |
| concepts[14].level | 2 |
| concepts[14].score | 0.18423444032669067 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q41571 |
| concepts[14].display_name | Epilepsy |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.15372797846794128 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C54355233 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[16].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/neuroscience |
| keywords[0].score | 0.6827379465103149 |
| keywords[0].display_name | Neuroscience |
| keywords[1].id | https://openalex.org/keywords/local-field-potential |
| keywords[1].score | 0.5724688172340393 |
| keywords[1].display_name | Local field potential |
| keywords[2].id | https://openalex.org/keywords/stimulus |
| keywords[2].score | 0.5679326057434082 |
| keywords[2].display_name | Stimulus (psychology) |
| keywords[3].id | https://openalex.org/keywords/temporal-lobe |
| keywords[3].score | 0.5277909636497498 |
| keywords[3].display_name | Temporal lobe |
| keywords[4].id | https://openalex.org/keywords/neural-ensemble |
| keywords[4].score | 0.5080158710479736 |
| keywords[4].display_name | Neural ensemble |
| keywords[5].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[5].score | 0.4938707947731018 |
| keywords[5].display_name | Recurrent neural network |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.4919304847717285 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.4795472323894501 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/sequence |
| keywords[8].score | 0.4712389409542084 |
| keywords[8].display_name | Sequence (biology) |
| keywords[9].id | https://openalex.org/keywords/neuron |
| keywords[9].score | 0.43870770931243896 |
| keywords[9].display_name | Neuron |
| keywords[10].id | https://openalex.org/keywords/oscillation |
| keywords[10].score | 0.42630618810653687 |
| keywords[10].display_name | Oscillation (cell signaling) |
| keywords[11].id | https://openalex.org/keywords/psychology |
| keywords[11].score | 0.37886857986450195 |
| keywords[11].display_name | Psychology |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.3404079079627991 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[13].score | 0.20419150590896606 |
| keywords[13].display_name | Cognitive psychology |
| keywords[14].id | https://openalex.org/keywords/epilepsy |
| keywords[14].score | 0.18423444032669067 |
| keywords[14].display_name | Epilepsy |
| keywords[15].id | https://openalex.org/keywords/biology |
| keywords[15].score | 0.15372797846794128 |
| keywords[15].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1101/2022.09.25.509370 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2022/09/27/2022.09.25.509370.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2022.09.25.509370 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5036330569 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2873-2943 |
| authorships[0].author.display_name | S Liebe |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].raw_affiliation_string | Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen University, Germany |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I135140700 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Epileptology, University of Bonn Medical Center, Bonn, Germany |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I8087733 |
| authorships[0].affiliations[2].raw_affiliation_string | University Hospital Tuebingen, Department of Neurology and Epileptology, Tuebingen, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I135140700 |
| authorships[0].institutions[0].ror | https://ror.org/041nas322 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I135140700 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | University of Bonn |
| authorships[0].institutions[1].id | https://openalex.org/I8087733 |
| authorships[0].institutions[1].ror | https://ror.org/03a1kwz48 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I8087733 |
| authorships[0].institutions[1].country_code | DE |
| authorships[0].institutions[1].display_name | University of Tübingen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Stefanie Liebe |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Epileptology, University of Bonn Medical Center, Bonn, Germany, Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen University, Germany, University Hospital Tuebingen, Department of Neurology and Epileptology, Tuebingen, Germany |
| authorships[1].author.id | https://openalex.org/A5014395558 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3323-2986 |
| authorships[1].author.display_name | Johannes Niediek |
| authorships[1].countries | DE, IL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I197251160 |
| authorships[1].affiliations[0].raw_affiliation_string | The Hebrew University of Jerusalem. The Edmond and Lily Safra Center for Brain Sciences. Jerusalem, Israel |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I135140700 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Epileptology, University of Bonn Medical Center, Bonn, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I135140700 |
| authorships[1].institutions[0].ror | https://ror.org/041nas322 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I135140700 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | University of Bonn |
| authorships[1].institutions[1].id | https://openalex.org/I197251160 |
| authorships[1].institutions[1].ror | https://ror.org/03qxff017 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I197251160 |
| authorships[1].institutions[1].country_code | IL |
| authorships[1].institutions[1].display_name | Hebrew University of Jerusalem |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Johannes Niediek |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Epileptology, University of Bonn Medical Center, Bonn, Germany, The Hebrew University of Jerusalem. The Edmond and Lily Safra Center for Brain Sciences. Jerusalem, Israel |
| authorships[2].author.id | https://openalex.org/A5045568925 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3051-1325 |
| authorships[2].author.display_name | Matthijs Pals |
| authorships[2].affiliations[0].raw_affiliation_string | Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen University, Germany |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Matthijs Pals |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen University, Germany |
| authorships[3].author.id | https://openalex.org/A5034766384 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3969-9782 |
| authorships[3].author.display_name | Thomas P. Reber |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I135140700 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Epileptology, University of Bonn Medical Center, Bonn, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I135140700 |
| authorships[3].institutions[0].ror | https://ror.org/041nas322 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I135140700 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | University of Bonn |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Thomas P. Reber |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Epileptology, University of Bonn Medical Center, Bonn, Germany |
| authorships[4].author.id | https://openalex.org/A5104089541 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Jenny Faber |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I135140700 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Epileptology, University of Bonn Medical Center, Bonn, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I135140700 |
| authorships[4].institutions[0].ror | https://ror.org/041nas322 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I135140700 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | University of Bonn |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jenny Faber |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Epileptology, University of Bonn Medical Center, Bonn, Germany |
| authorships[5].author.id | https://openalex.org/A5075338749 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Jan Bostroem |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I135140700 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Epileptology, University of Bonn Medical Center, Bonn, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I135140700 |
| authorships[5].institutions[0].ror | https://ror.org/041nas322 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I135140700 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | University of Bonn |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jan Bostroem |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Epileptology, University of Bonn Medical Center, Bonn, Germany |
| authorships[6].author.id | https://openalex.org/A5061406453 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2531-6701 |
| authorships[6].author.display_name | Christian E. Elger |
| authorships[6].countries | DE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I135140700 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Epileptology, University of Bonn Medical Center, Bonn, Germany |
| authorships[6].institutions[0].id | https://openalex.org/I135140700 |
| authorships[6].institutions[0].ror | https://ror.org/041nas322 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I135140700 |
| authorships[6].institutions[0].country_code | DE |
| authorships[6].institutions[0].display_name | University of Bonn |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Christian E. Elger |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Epileptology, University of Bonn Medical Center, Bonn, Germany |
| authorships[7].author.id | https://openalex.org/A5080225154 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5154-8912 |
| authorships[7].author.display_name | Jakob H. Macke |
| authorships[7].countries | DE |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210135521 |
| authorships[7].affiliations[0].raw_affiliation_string | Max Planck Institute for Intelligent Systems, Tübingen, Germany |
| authorships[7].affiliations[1].raw_affiliation_string | Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen University, Germany |
| authorships[7].institutions[0].id | https://openalex.org/I4210135521 |
| authorships[7].institutions[0].ror | https://ror.org/04fq9j139 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I149899117, https://openalex.org/I4210135521 |
| authorships[7].institutions[0].country_code | DE |
| authorships[7].institutions[0].display_name | Max Planck Institute for Intelligent Systems |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jakob H. Macke |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen University, Germany, Max Planck Institute for Intelligent Systems, Tübingen, Germany |
| authorships[8].author.id | https://openalex.org/A5044223444 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-1305-8028 |
| authorships[8].author.display_name | Florian Mormann |
| authorships[8].countries | DE |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I135140700 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Epileptology, University of Bonn Medical Center, Bonn, Germany |
| authorships[8].institutions[0].id | https://openalex.org/I135140700 |
| authorships[8].institutions[0].ror | https://ror.org/041nas322 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I135140700 |
| authorships[8].institutions[0].country_code | DE |
| authorships[8].institutions[0].display_name | University of Bonn |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Florian Mormann |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | Department of Epileptology, University of Bonn Medical Center, Bonn, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2022/09/27/2022.09.25.509370.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Phase of firing does not reflect temporal order in sequence memory of humans and recurrent neural networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10581 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Neural dynamics and brain function |
| related_works | https://openalex.org/W4388850725, https://openalex.org/W2474011416, https://openalex.org/W1980451075, https://openalex.org/W4232732910, https://openalex.org/W4376269449, https://openalex.org/W1976993603, https://openalex.org/W4385466631, https://openalex.org/W4411020363, https://openalex.org/W3080524921, https://openalex.org/W2012790806 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2022.09.25.509370 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2022/09/27/2022.09.25.509370.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2022.09.25.509370 |
| primary_location.id | doi:10.1101/2022.09.25.509370 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2022/09/27/2022.09.25.509370.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2022.09.25.509370 |
| publication_date | 2022-09-27 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2058491602, https://openalex.org/W2595112891, https://openalex.org/W1985942784, https://openalex.org/W3108561765, https://openalex.org/W2101295242, https://openalex.org/W4200239099, https://openalex.org/W2072843066, https://openalex.org/W2119572534, https://openalex.org/W4233052001, https://openalex.org/W3004996877, https://openalex.org/W1995403150, https://openalex.org/W2893325263, https://openalex.org/W2055715294, https://openalex.org/W2007430976, https://openalex.org/W2766936425, https://openalex.org/W1976804176, https://openalex.org/W2170295149, https://openalex.org/W2078212398, https://openalex.org/W3007176118, https://openalex.org/W3171311988, https://openalex.org/W2164288903, https://openalex.org/W2089498780, https://openalex.org/W2161908852, https://openalex.org/W2065096279, https://openalex.org/W1902335101, https://openalex.org/W3112931590, https://openalex.org/W2950800702, https://openalex.org/W2102701721, https://openalex.org/W2280725856, https://openalex.org/W2908124316, https://openalex.org/W2200681203, https://openalex.org/W1980679874, https://openalex.org/W2157787057, https://openalex.org/W2952438722, https://openalex.org/W2516799295, https://openalex.org/W1966357073, https://openalex.org/W2008713070, https://openalex.org/W2162013747, https://openalex.org/W2100025202, https://openalex.org/W2113407801, https://openalex.org/W2421771856, https://openalex.org/W2079089387, https://openalex.org/W2119309793, https://openalex.org/W1968420169, https://openalex.org/W1987834694, https://openalex.org/W2047125104, https://openalex.org/W1980324747, https://openalex.org/W4281663412, https://openalex.org/W2963569887, https://openalex.org/W3212179912, https://openalex.org/W2948630104, https://openalex.org/W1944652955, https://openalex.org/W4307204571, https://openalex.org/W2099107563, https://openalex.org/W2136104104, https://openalex.org/W2560839866, https://openalex.org/W1948588766, https://openalex.org/W2096316691, https://openalex.org/W1991630689, https://openalex.org/W2027802883, https://openalex.org/W3210812774, https://openalex.org/W1522301498, https://openalex.org/W1815076433, https://openalex.org/W3105673225, https://openalex.org/W3130344477 |
| referenced_works_count | 65 |
| abstract_inverted_index.- | 87, 92, 183 |
| abstract_inverted_index.. | 31 |
| abstract_inverted_index.1 | 30 |
| abstract_inverted_index.A | 1 |
| abstract_inverted_index.a | 10, 61, 102, 172, 184, 220 |
| abstract_inverted_index.16 | 57 |
| abstract_inverted_index.To | 117 |
| abstract_inverted_index.We | 32, 68, 84 |
| abstract_inverted_index.an | 130 |
| abstract_inverted_index.at | 24, 78, 215 |
| abstract_inverted_index.by | 36 |
| abstract_inverted_index.in | 15, 19, 51, 105, 189, 195, 211, 231 |
| abstract_inverted_index.is | 17, 96 |
| abstract_inverted_index.of | 9, 12, 22, 27, 56, 75, 94, 161, 209, 227 |
| abstract_inverted_index.on | 89 |
| abstract_inverted_index.to | 98, 107, 128, 134, 156 |
| abstract_inverted_index.we | 121, 138, 170, 186, 202 |
| abstract_inverted_index.921 | 49 |
| abstract_inverted_index.and | 44, 72, 180, 198, 229 |
| abstract_inverted_index.did | 112, 164 |
| abstract_inverted_index.for | 65, 206 |
| abstract_inverted_index.not | 113, 165 |
| abstract_inverted_index.our | 190 |
| abstract_inverted_index.the | 6, 52, 108, 207, 216, 224 |
| abstract_inverted_index.RNNs | 141 |
| abstract_inverted_index.both | 196 |
| abstract_inverted_index.find | 85 |
| abstract_inverted_index.held | 14 |
| abstract_inverted_index.item | 99, 115, 157, 167 |
| abstract_inverted_index.link | 174 |
| abstract_inverted_index.lobe | 55 |
| abstract_inverted_index.role | 208, 226 |
| abstract_inverted_index.same | 217 |
| abstract_inverted_index.show | 139 |
| abstract_inverted_index.task | 64 |
| abstract_inverted_index.that | 5, 86, 140 |
| abstract_inverted_index.this | 34 |
| abstract_inverted_index.time | 218 |
| abstract_inverted_index.(1420 | 42 |
| abstract_inverted_index.(LFP, | 48 |
| abstract_inverted_index.Taken | 193 |
| abstract_inverted_index.about | 223 |
| abstract_inverted_index.again | 163 |
| abstract_inverted_index.field | 46 |
| abstract_inverted_index.items | 13 |
| abstract_inverted_index.local | 45 |
| abstract_inverted_index.match | 114, 166 |
| abstract_inverted_index.model | 149 |
| abstract_inverted_index.order | 8, 111 |
| abstract_inverted_index.phase | 80, 93, 110, 160, 176 |
| abstract_inverted_index.probe | 33 |
| abstract_inverted_index.task. | 132 |
| abstract_inverted_index.theta | 28, 70, 79, 143, 152 |
| abstract_inverted_index.where | 159 |
| abstract_inverted_index.while | 214 |
| abstract_inverted_index.(RNNs) | 127 |
| abstract_inverted_index.during | 81, 145 |
| abstract_inverted_index.firing | 21, 74, 95, 154, 162 |
| abstract_inverted_index.medial | 53 |
| abstract_inverted_index.memory | 16, 63, 82, 90, 146, 212 |
| abstract_inverted_index.neural | 125, 136, 191, 200 |
| abstract_inverted_index.neuron | 40 |
| abstract_inverted_index.order, | 177 |
| abstract_inverted_index.order. | 67, 116, 168 |
| abstract_inverted_index.phases | 26 |
| abstract_inverted_index.single | 39, 76 |
| abstract_inverted_index.theory | 3, 35, 222 |
| abstract_inverted_index.timing | 179 |
| abstract_inverted_index.within | 101 |
| abstract_inverted_index.Similar | 133 |
| abstract_inverted_index.between | 175 |
| abstract_inverted_index.exhibit | 151 |
| abstract_inverted_index.memory. | 233 |
| abstract_inverted_index.neurons | 23, 77, 150 |
| abstract_inverted_index.observe | 69 |
| abstract_inverted_index.ordered | 20 |
| abstract_inverted_index.perform | 129 |
| abstract_inverted_index.provide | 203 |
| abstract_inverted_index.related | 97, 155 |
| abstract_inverted_index.spiking | 228 |
| abstract_inverted_index.theory, | 109 |
| abstract_inverted_index.trained | 123 |
| abstract_inverted_index.working | 62 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 104 |
| abstract_inverted_index.Instead, | 169 |
| abstract_inverted_index.activity | 41 |
| abstract_inverted_index.contrast | 106 |
| abstract_inverted_index.directly | 37 |
| abstract_inverted_index.epilepsy | 58 |
| abstract_inverted_index.evidence | 205 |
| abstract_inverted_index.generate | 142 |
| abstract_inverted_index.networks | 126, 201 |
| abstract_inverted_index.neurons) | 43 |
| abstract_inverted_index.observed | 171 |
| abstract_inverted_index.patients | 59 |
| abstract_inverted_index.position | 100 |
| abstract_inverted_index.proposes | 4 |
| abstract_inverted_index.recorded | 135 |
| abstract_inverted_index.sequence | 11, 232 |
| abstract_inverted_index.stimulus | 178 |
| abstract_inverted_index.temporal | 7, 54, 66 |
| abstract_inverted_index.activity, | 137 |
| abstract_inverted_index.analogous | 131 |
| abstract_inverted_index.channels) | 50 |
| abstract_inverted_index.confirmed | 188 |
| abstract_inverted_index.depending | 88 |
| abstract_inverted_index.different | 25 |
| abstract_inverted_index.frequency | 182 |
| abstract_inverted_index.long-held | 221 |
| abstract_inverted_index.measuring | 38 |
| abstract_inverted_index.position, | 158 |
| abstract_inverted_index.prominent | 2 |
| abstract_inverted_index.recurrent | 124 |
| abstract_inverted_index.reflected | 18 |
| abstract_inverted_index.sequence. | 103 |
| abstract_inverted_index.together, | 194 |
| abstract_inverted_index.artificial | 199 |
| abstract_inverted_index.biological | 197 |
| abstract_inverted_index.functional | 225 |
| abstract_inverted_index.performing | 60 |
| abstract_inverted_index.potentials | 47 |
| abstract_inverted_index.processing | 213 |
| abstract_inverted_index.underlying | 119 |
| abstract_inverted_index.validating | 204 |
| abstract_inverted_index.challenging | 219 |
| abstract_inverted_index.investigate | 118 |
| abstract_inverted_index.mechanisms, | 120 |
| abstract_inverted_index.mechanistic | 173 |
| abstract_inverted_index.oscillation | 181 |
| abstract_inverted_index.performance | 91 |
| abstract_inverted_index.recordings. | 192 |
| abstract_inverted_index.Importantly, | 148 |
| abstract_inverted_index.maintenance. | 83, 147 |
| abstract_inverted_index.oscillations | 29, 71, 144, 230 |
| abstract_inverted_index.preferential | 73 |
| abstract_inverted_index.relationship | 185 |
| abstract_inverted_index.subsequently | 122, 187 |
| abstract_inverted_index.phase-dependent | 153 |
| abstract_inverted_index.phase-of-firing | 210 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5036330569, https://openalex.org/A5044223444 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I135140700, https://openalex.org/I8087733 |
| citation_normalized_percentile.value | 0.78491693 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |