Phasor-Measurement-Unit-Based Data Analytics Using Digital Twin and PhasorAnalytics Software Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.2172/1828164
A major objective of this project was to apply GE’s commercial machine learning and data analytics toolsets to large-scale, real-world, anonymized Phasor Measurement Unit (PMU) datasets in order to extract signatures, correlated and/or causal factors, and precursor patterns associated with significant power system phenomena. The project had a particular emphasis on extraction of insights relevant to asset health monitoring, real-time load modeling and cybersecurity monitoring. Additionally, the team was directed to undertake a comprehensive data quality analysis for the provided datasets and encouraged to estimate the ‘machine-learning readiness’ of the datasets by documenting any major obstacles to the application of commercial machine learning algorithms. To accomplish the aforementioned objectives, the project team’s work centered around the identification of key event signatures and application of the identified event signatures for event detection and event classification. The industry-validated, semi-supervised machine learning strategy employed for event signature identification involved several major tasks, including data-preprocessing, generation of an overabundance of features, normal data identification, normality modeling, and event signature identification through a methodical, quantitative ranking of features in order of relevance to each studied event type. Throughout the project, data quality issues and mitigation techniques were investigated. In this report, insights are provided regarding the readiness of the provided synchrophasor datasets for application of machine learning and data analytics. The methodologies employed for this technical strategy are summarized in this report. With regards to data preprocessing and feature generation, the provided Training and Test Datasets were ingested into GE’s big data environment. Subsequently, the team applied bad data cleansing and data imputation scripts, event detection scripts, and application programming interfaces (APIs) to the datasets for convenient data access. The project team completed development and validation of dozens of physics-based, statistics-based and transformation-based feature functions used for the extraction of over 60 synchrophasor features. Using a new parallel feature generation technology developed on this project, over 60 features have been rapidly generated for the full two years’ worth of Training and Test Dataset data associated with both the Eastern and Western interconnects. Even accommodating for temporal down-sampling inherent to the feature extraction procedure, this parallel feature generation activity resulted in a massive feature set with a storage requirement approximately equal to that of the raw training dataset itself. With regards to normal data identification and normality modeling, a normality model was built using the feature data extracted from the Training Dataset and iteratively refined subsequent to incremental adjustments and expansions of the Training Dataset feature data. With respect to event characterization and signature identification, an event signature identification pipeline was developed and used in conjunction with the normality model to identify over 15 event signatures for key event categories within the Training Dataset. The identified event signatures were used to characterize hundreds of key events in terms of relative severity, duration, and location of the event. An investigation was undertaken to identify correlated and causal factors involved in transformer events. A separate investigation into temporal trends in ring-down analysis results was undertaken to determine possible associations between system dynamics and various other factors such as loading, season or year. To validate the identified event signatures, additional work was undertaken to develop signature-based anomaly detection and classification tools suitable for convenient application to the synchrophasor datasets. The anomaly detection and classification tools, suitable for online application, were then applied to the entirety of the Eastern Interconnect Training and Test Datasets. Performance of the event detection and classification tools was evaluated upon receipt of the Test Dataset event logs (i.e., the labels for events contained in the Test Dataset), and promising results were obtained despite several challenges (documented herein) associated with application of supervised or semi-supervised machine learning methods to large-scale, anonymized datasets. Finally, the detection and classification tools were used to detect, classify, and characterize thousands of new events not included in the original event logs provided by the DOE within both the Training and Test Datasets.
Related Topics
- Type
- report
- Language
- en
- Landing Page
- https://doi.org/10.2172/1828164
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4200195634
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4200195634Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2172/1828164Digital Object Identifier
- Title
-
Phasor-Measurement-Unit-Based Data Analytics Using Digital Twin and PhasorAnalytics SoftwareWork title
- Type
-
reportOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-28Full publication date if available
- Authors
-
Philip J. Hart, Weizhong Yan, Tianyi Wang, Vijay S. Kumar, Pengyuan Wang, Lijun He, Arun Subramanian, Kareem S. AggourList of authors in order
- Landing page
-
https://doi.org/10.2172/1828164Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/1828164Direct OA link when available
- Concepts
-
Phasor measurement unit, Analytics, Software, Computer science, Software analytics, Unit (ring theory), Phasor, Data analysis, Data mining, Operating system, Software system, Mathematics, Component-based software engineering, Physics, Electric power system, Mathematics education, Power (physics), Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4200195634 |
|---|---|
| doi | https://doi.org/10.2172/1828164 |
| ids.doi | https://doi.org/10.2172/1828164 |
| ids.openalex | https://openalex.org/W4200195634 |
| fwci | |
| type | report |
| title | Phasor-Measurement-Unit-Based Data Analytics Using Digital Twin and PhasorAnalytics Software |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10763 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.5066999793052673 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Digital Transformation in Industry |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778229166 |
| concepts[0].level | 5 |
| concepts[0].score | 0.7000492215156555 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q8290 |
| concepts[0].display_name | Phasor measurement unit |
| concepts[1].id | https://openalex.org/C79158427 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6542463302612305 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[1].display_name | Analytics |
| concepts[2].id | https://openalex.org/C2777904410 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6237677335739136 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[2].display_name | Software |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5801613330841064 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C171981572 |
| concepts[4].level | 5 |
| concepts[4].score | 0.5160486102104187 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7554239 |
| concepts[4].display_name | Software analytics |
| concepts[5].id | https://openalex.org/C122637931 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48743799328804016 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q118084 |
| concepts[5].display_name | Unit (ring theory) |
| concepts[6].id | https://openalex.org/C176605952 |
| concepts[6].level | 4 |
| concepts[6].score | 0.48320186138153076 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q827674 |
| concepts[6].display_name | Phasor |
| concepts[7].id | https://openalex.org/C175801342 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46216675639152527 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1988917 |
| concepts[7].display_name | Data analysis |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3311343193054199 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C111919701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.16722050309181213 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[9].display_name | Operating system |
| concepts[10].id | https://openalex.org/C149091818 |
| concepts[10].level | 3 |
| concepts[10].score | 0.15678387880325317 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2429814 |
| concepts[10].display_name | Software system |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0973091721534729 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C174683762 |
| concepts[12].level | 4 |
| concepts[12].score | 0.0819961428642273 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q609588 |
| concepts[12].display_name | Component-based software engineering |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.057293087244033813 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C89227174 |
| concepts[14].level | 3 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2388981 |
| concepts[14].display_name | Electric power system |
| concepts[15].id | https://openalex.org/C145420912 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q853077 |
| concepts[15].display_name | Mathematics education |
| concepts[16].id | https://openalex.org/C163258240 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[16].display_name | Power (physics) |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/phasor-measurement-unit |
| keywords[0].score | 0.7000492215156555 |
| keywords[0].display_name | Phasor measurement unit |
| keywords[1].id | https://openalex.org/keywords/analytics |
| keywords[1].score | 0.6542463302612305 |
| keywords[1].display_name | Analytics |
| keywords[2].id | https://openalex.org/keywords/software |
| keywords[2].score | 0.6237677335739136 |
| keywords[2].display_name | Software |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5801613330841064 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/software-analytics |
| keywords[4].score | 0.5160486102104187 |
| keywords[4].display_name | Software analytics |
| keywords[5].id | https://openalex.org/keywords/unit |
| keywords[5].score | 0.48743799328804016 |
| keywords[5].display_name | Unit (ring theory) |
| keywords[6].id | https://openalex.org/keywords/phasor |
| keywords[6].score | 0.48320186138153076 |
| keywords[6].display_name | Phasor |
| keywords[7].id | https://openalex.org/keywords/data-analysis |
| keywords[7].score | 0.46216675639152527 |
| keywords[7].display_name | Data analysis |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.3311343193054199 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/operating-system |
| keywords[9].score | 0.16722050309181213 |
| keywords[9].display_name | Operating system |
| keywords[10].id | https://openalex.org/keywords/software-system |
| keywords[10].score | 0.15678387880325317 |
| keywords[10].display_name | Software system |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.0973091721534729 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/component-based-software-engineering |
| keywords[12].score | 0.0819961428642273 |
| keywords[12].display_name | Component-based software engineering |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.057293087244033813 |
| keywords[13].display_name | Physics |
| language | en |
| locations[0].id | doi:10.2172/1828164 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | report |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2172/1828164 |
| locations[1].id | pmh:oai:osti.gov:1828164 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/1828164 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5040721524 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6246-7421 |
| authorships[0].author.display_name | Philip J. Hart |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[0].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY (United States) |
| authorships[0].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[0].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | GE Global Research (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Philip Hart |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | GE Research, Niskayuna, NY (United States) |
| authorships[1].author.id | https://openalex.org/A5073342710 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7916-8476 |
| authorships[1].author.display_name | Weizhong Yan |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[1].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY (United States) |
| authorships[1].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[1].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | GE Global Research (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Weizhong Yan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | GE Research, Niskayuna, NY (United States) |
| authorships[2].author.id | https://openalex.org/A5108362264 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0349-9444 |
| authorships[2].author.display_name | Tianyi Wang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[2].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY (United States) |
| authorships[2].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[2].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | GE Global Research (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tianyi Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | GE Research, Niskayuna, NY (United States) |
| authorships[3].author.id | https://openalex.org/A5101673411 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2234-1546 |
| authorships[3].author.display_name | Vijay S. Kumar |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[3].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY (United States) |
| authorships[3].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[3].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | GE Global Research (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vijay Kumar |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | GE Research, Niskayuna, NY (United States) |
| authorships[4].author.id | https://openalex.org/A5100714810 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6444-1257 |
| authorships[4].author.display_name | Pengyuan Wang |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[4].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY (United States) |
| authorships[4].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[4].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | GE Global Research (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pengyuan Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | GE Research, Niskayuna, NY (United States) |
| authorships[5].author.id | https://openalex.org/A5103102429 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5788-4383 |
| authorships[5].author.display_name | Lijun He |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[5].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY (United States) |
| authorships[5].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[5].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | GE Global Research (United States) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Lijun He |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | GE Research, Niskayuna, NY (United States) |
| authorships[6].author.id | https://openalex.org/A5010796940 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Arun Subramanian |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[6].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY (United States) |
| authorships[6].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[6].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | GE Global Research (United States) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Arun Subramanian |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | GE Research, Niskayuna, NY (United States) |
| authorships[7].author.id | https://openalex.org/A5050284653 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7467-3836 |
| authorships[7].author.display_name | Kareem S. Aggour |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[7].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY (United States) |
| authorships[7].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[7].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | GE Global Research (United States) |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Kareem Aggour |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | GE Research, Niskayuna, NY (United States) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/1828164 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Phasor-Measurement-Unit-Based Data Analytics Using Digital Twin and PhasorAnalytics Software |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10763 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.5066999793052673 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Digital Transformation in Industry |
| related_works | https://openalex.org/W4226266853, https://openalex.org/W4210252074, https://openalex.org/W2413477332, https://openalex.org/W3033964479, https://openalex.org/W3092201768, https://openalex.org/W2898375586, https://openalex.org/W2320240660, https://openalex.org/W3123108850, https://openalex.org/W2051833471, https://openalex.org/W2740083192 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:1828164 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/1828164 |
| primary_location.id | doi:10.2172/1828164 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | report |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2172/1828164 |
| publication_date | 2021-12-28 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 0, 485 |
| abstract_inverted_index.a | 47, 72, 167, 300, 355, 360, 382 |
| abstract_inverted_index.15 | 437 |
| abstract_inverted_index.60 | 296, 311 |
| abstract_inverted_index.An | 471 |
| abstract_inverted_index.In | 193 |
| abstract_inverted_index.To | 104, 514 |
| abstract_inverted_index.an | 153, 419 |
| abstract_inverted_index.as | 509 |
| abstract_inverted_index.by | 91, 641 |
| abstract_inverted_index.in | 26, 173, 224, 354, 428, 460, 482, 491, 588, 635 |
| abstract_inverted_index.of | 3, 52, 88, 99, 117, 123, 152, 155, 171, 175, 202, 209, 281, 283, 294, 323, 367, 405, 457, 462, 468, 556, 565, 576, 605, 630 |
| abstract_inverted_index.on | 50, 307 |
| abstract_inverted_index.or | 512, 607 |
| abstract_inverted_index.to | 7, 17, 28, 55, 70, 83, 96, 177, 229, 267, 343, 365, 375, 400, 413, 434, 454, 475, 497, 524, 536, 553, 612, 624 |
| abstract_inverted_index.DOE | 643 |
| abstract_inverted_index.The | 44, 134, 215, 274, 448, 540 |
| abstract_inverted_index.and | 13, 35, 62, 81, 121, 131, 162, 188, 212, 232, 238, 255, 262, 279, 286, 325, 334, 379, 396, 403, 416, 426, 466, 478, 504, 529, 543, 561, 569, 592, 619, 627, 648 |
| abstract_inverted_index.any | 93 |
| abstract_inverted_index.are | 197, 222 |
| abstract_inverted_index.bad | 252 |
| abstract_inverted_index.big | 245 |
| abstract_inverted_index.for | 77, 128, 141, 207, 218, 270, 291, 317, 339, 440, 533, 547, 585 |
| abstract_inverted_index.had | 46 |
| abstract_inverted_index.key | 118, 441, 458 |
| abstract_inverted_index.new | 301, 631 |
| abstract_inverted_index.not | 633 |
| abstract_inverted_index.raw | 369 |
| abstract_inverted_index.set | 358 |
| abstract_inverted_index.the | 66, 78, 85, 89, 97, 106, 109, 115, 124, 183, 200, 203, 235, 249, 268, 292, 318, 332, 344, 368, 388, 393, 406, 431, 445, 469, 516, 537, 554, 557, 566, 577, 583, 589, 617, 636, 642, 646 |
| abstract_inverted_index.two | 320 |
| abstract_inverted_index.was | 6, 68, 385, 424, 473, 495, 522, 572 |
| abstract_inverted_index.Even | 337 |
| abstract_inverted_index.Test | 239, 326, 562, 578, 590, 649 |
| abstract_inverted_index.Unit | 23 |
| abstract_inverted_index.With | 227, 373, 411 |
| abstract_inverted_index.been | 314 |
| abstract_inverted_index.both | 331, 645 |
| abstract_inverted_index.data | 14, 74, 158, 185, 213, 230, 246, 253, 256, 272, 328, 377, 390 |
| abstract_inverted_index.each | 178 |
| abstract_inverted_index.from | 392 |
| abstract_inverted_index.full | 319 |
| abstract_inverted_index.have | 313 |
| abstract_inverted_index.into | 243, 488 |
| abstract_inverted_index.load | 60 |
| abstract_inverted_index.logs | 581, 639 |
| abstract_inverted_index.over | 295, 310, 436 |
| abstract_inverted_index.such | 508 |
| abstract_inverted_index.team | 67, 250, 276 |
| abstract_inverted_index.that | 366 |
| abstract_inverted_index.then | 551 |
| abstract_inverted_index.this | 4, 194, 219, 225, 308, 348 |
| abstract_inverted_index.upon | 574 |
| abstract_inverted_index.used | 290, 427, 453, 623 |
| abstract_inverted_index.were | 191, 241, 452, 550, 595, 622 |
| abstract_inverted_index.with | 39, 330, 359, 430, 603 |
| abstract_inverted_index.work | 112, 521 |
| abstract_inverted_index.(PMU) | 24 |
| abstract_inverted_index.Using | 299 |
| abstract_inverted_index.apply | 8 |
| abstract_inverted_index.asset | 56 |
| abstract_inverted_index.built | 386 |
| abstract_inverted_index.data. | 410 |
| abstract_inverted_index.equal | 364 |
| abstract_inverted_index.event | 119, 126, 129, 132, 142, 163, 180, 259, 414, 420, 438, 442, 450, 518, 567, 580, 638 |
| abstract_inverted_index.major | 1, 94, 147 |
| abstract_inverted_index.model | 384, 433 |
| abstract_inverted_index.order | 27, 174 |
| abstract_inverted_index.other | 506 |
| abstract_inverted_index.power | 41 |
| abstract_inverted_index.terms | 461 |
| abstract_inverted_index.tools | 531, 571, 621 |
| abstract_inverted_index.type. | 181 |
| abstract_inverted_index.using | 387 |
| abstract_inverted_index.worth | 322 |
| abstract_inverted_index.year. | 513 |
| abstract_inverted_index.(APIs) | 266 |
| abstract_inverted_index.(i.e., | 582 |
| abstract_inverted_index.GE’s | 9, 244 |
| abstract_inverted_index.Phasor | 21 |
| abstract_inverted_index.and/or | 32 |
| abstract_inverted_index.around | 114 |
| abstract_inverted_index.causal | 33, 479 |
| abstract_inverted_index.dozens | 282 |
| abstract_inverted_index.event. | 470 |
| abstract_inverted_index.events | 459, 586, 632 |
| abstract_inverted_index.health | 57 |
| abstract_inverted_index.issues | 187 |
| abstract_inverted_index.labels | 584 |
| abstract_inverted_index.normal | 157, 376 |
| abstract_inverted_index.online | 548 |
| abstract_inverted_index.season | 511 |
| abstract_inverted_index.system | 42, 502 |
| abstract_inverted_index.tasks, | 148 |
| abstract_inverted_index.tools, | 545 |
| abstract_inverted_index.trends | 490 |
| abstract_inverted_index.within | 444, 644 |
| abstract_inverted_index.Dataset | 327, 395, 408, 579 |
| abstract_inverted_index.Eastern | 333, 558 |
| abstract_inverted_index.Western | 335 |
| abstract_inverted_index.access. | 273 |
| abstract_inverted_index.anomaly | 527, 541 |
| abstract_inverted_index.applied | 251, 552 |
| abstract_inverted_index.between | 501 |
| abstract_inverted_index.dataset | 371 |
| abstract_inverted_index.despite | 597 |
| abstract_inverted_index.detect, | 625 |
| abstract_inverted_index.develop | 525 |
| abstract_inverted_index.events. | 484 |
| abstract_inverted_index.extract | 29 |
| abstract_inverted_index.factors | 480, 507 |
| abstract_inverted_index.feature | 233, 288, 303, 345, 350, 357, 389, 409 |
| abstract_inverted_index.herein) | 601 |
| abstract_inverted_index.itself. | 372 |
| abstract_inverted_index.machine | 11, 101, 137, 210, 609 |
| abstract_inverted_index.massive | 356 |
| abstract_inverted_index.methods | 611 |
| abstract_inverted_index.project | 5, 45, 110, 275 |
| abstract_inverted_index.quality | 75, 186 |
| abstract_inverted_index.ranking | 170 |
| abstract_inverted_index.rapidly | 315 |
| abstract_inverted_index.receipt | 575 |
| abstract_inverted_index.refined | 398 |
| abstract_inverted_index.regards | 228, 374 |
| abstract_inverted_index.report, | 195 |
| abstract_inverted_index.report. | 226 |
| abstract_inverted_index.respect | 412 |
| abstract_inverted_index.results | 494, 594 |
| abstract_inverted_index.several | 146, 598 |
| abstract_inverted_index.storage | 361 |
| abstract_inverted_index.studied | 179 |
| abstract_inverted_index.through | 166 |
| abstract_inverted_index.various | 505 |
| abstract_inverted_index.Dataset. | 447 |
| abstract_inverted_index.Datasets | 240 |
| abstract_inverted_index.Finally, | 616 |
| abstract_inverted_index.Training | 237, 324, 394, 407, 446, 560, 647 |
| abstract_inverted_index.activity | 352 |
| abstract_inverted_index.analysis | 76, 493 |
| abstract_inverted_index.centered | 113 |
| abstract_inverted_index.datasets | 25, 80, 90, 206, 269 |
| abstract_inverted_index.directed | 69 |
| abstract_inverted_index.dynamics | 503 |
| abstract_inverted_index.emphasis | 49 |
| abstract_inverted_index.employed | 140, 217 |
| abstract_inverted_index.entirety | 555 |
| abstract_inverted_index.estimate | 84 |
| abstract_inverted_index.factors, | 34 |
| abstract_inverted_index.features | 172, 312 |
| abstract_inverted_index.hundreds | 456 |
| abstract_inverted_index.identify | 435, 476 |
| abstract_inverted_index.included | 634 |
| abstract_inverted_index.ingested | 242 |
| abstract_inverted_index.inherent | 342 |
| abstract_inverted_index.insights | 53, 196 |
| abstract_inverted_index.involved | 145, 481 |
| abstract_inverted_index.learning | 12, 102, 138, 211, 610 |
| abstract_inverted_index.loading, | 510 |
| abstract_inverted_index.location | 467 |
| abstract_inverted_index.modeling | 61 |
| abstract_inverted_index.obtained | 596 |
| abstract_inverted_index.original | 637 |
| abstract_inverted_index.parallel | 302, 349 |
| abstract_inverted_index.patterns | 37 |
| abstract_inverted_index.pipeline | 423 |
| abstract_inverted_index.possible | 499 |
| abstract_inverted_index.project, | 184, 309 |
| abstract_inverted_index.provided | 79, 198, 204, 236, 640 |
| abstract_inverted_index.relative | 463 |
| abstract_inverted_index.relevant | 54 |
| abstract_inverted_index.resulted | 353 |
| abstract_inverted_index.scripts, | 258, 261 |
| abstract_inverted_index.separate | 486 |
| abstract_inverted_index.strategy | 139, 221 |
| abstract_inverted_index.suitable | 532, 546 |
| abstract_inverted_index.team’s | 111 |
| abstract_inverted_index.temporal | 340, 489 |
| abstract_inverted_index.toolsets | 16 |
| abstract_inverted_index.training | 370 |
| abstract_inverted_index.validate | 515 |
| abstract_inverted_index.years’ | 321 |
| abstract_inverted_index.Dataset), | 591 |
| abstract_inverted_index.Datasets. | 563, 650 |
| abstract_inverted_index.analytics | 15 |
| abstract_inverted_index.classify, | 626 |
| abstract_inverted_index.cleansing | 254 |
| abstract_inverted_index.completed | 277 |
| abstract_inverted_index.contained | 587 |
| abstract_inverted_index.datasets. | 539, 615 |
| abstract_inverted_index.detection | 130, 260, 528, 542, 568, 618 |
| abstract_inverted_index.determine | 498 |
| abstract_inverted_index.developed | 306, 425 |
| abstract_inverted_index.duration, | 465 |
| abstract_inverted_index.evaluated | 573 |
| abstract_inverted_index.extracted | 391 |
| abstract_inverted_index.features, | 156 |
| abstract_inverted_index.features. | 298 |
| abstract_inverted_index.functions | 289 |
| abstract_inverted_index.generated | 316 |
| abstract_inverted_index.including | 149 |
| abstract_inverted_index.modeling, | 161, 381 |
| abstract_inverted_index.normality | 160, 380, 383, 432 |
| abstract_inverted_index.objective | 2 |
| abstract_inverted_index.obstacles | 95 |
| abstract_inverted_index.precursor | 36 |
| abstract_inverted_index.promising | 593 |
| abstract_inverted_index.readiness | 201 |
| abstract_inverted_index.real-time | 59 |
| abstract_inverted_index.regarding | 199 |
| abstract_inverted_index.relevance | 176 |
| abstract_inverted_index.ring-down | 492 |
| abstract_inverted_index.severity, | 464 |
| abstract_inverted_index.signature | 143, 164, 417, 421 |
| abstract_inverted_index.technical | 220 |
| abstract_inverted_index.thousands | 629 |
| abstract_inverted_index.undertake | 71 |
| abstract_inverted_index.Throughout | 182 |
| abstract_inverted_index.accomplish | 105 |
| abstract_inverted_index.additional | 520 |
| abstract_inverted_index.analytics. | 214 |
| abstract_inverted_index.anonymized | 20, 614 |
| abstract_inverted_index.associated | 38, 329, 602 |
| abstract_inverted_index.categories | 443 |
| abstract_inverted_index.challenges | 599 |
| abstract_inverted_index.commercial | 10, 100 |
| abstract_inverted_index.convenient | 271, 534 |
| abstract_inverted_index.correlated | 31, 477 |
| abstract_inverted_index.encouraged | 82 |
| abstract_inverted_index.expansions | 404 |
| abstract_inverted_index.extraction | 51, 293, 346 |
| abstract_inverted_index.generation | 151, 304, 351 |
| abstract_inverted_index.identified | 125, 449, 517 |
| abstract_inverted_index.imputation | 257 |
| abstract_inverted_index.interfaces | 265 |
| abstract_inverted_index.mitigation | 189 |
| abstract_inverted_index.particular | 48 |
| abstract_inverted_index.phenomena. | 43 |
| abstract_inverted_index.procedure, | 347 |
| abstract_inverted_index.signatures | 120, 127, 439, 451 |
| abstract_inverted_index.subsequent | 399 |
| abstract_inverted_index.summarized | 223 |
| abstract_inverted_index.supervised | 606 |
| abstract_inverted_index.techniques | 190 |
| abstract_inverted_index.technology | 305 |
| abstract_inverted_index.undertaken | 474, 496, 523 |
| abstract_inverted_index.validation | 280 |
| abstract_inverted_index.(documented | 600 |
| abstract_inverted_index.Measurement | 22 |
| abstract_inverted_index.Performance | 564 |
| abstract_inverted_index.adjustments | 402 |
| abstract_inverted_index.algorithms. | 103 |
| abstract_inverted_index.application | 98, 122, 208, 263, 535, 604 |
| abstract_inverted_index.conjunction | 429 |
| abstract_inverted_index.development | 278 |
| abstract_inverted_index.documenting | 92 |
| abstract_inverted_index.generation, | 234 |
| abstract_inverted_index.incremental | 401 |
| abstract_inverted_index.iteratively | 397 |
| abstract_inverted_index.methodical, | 168 |
| abstract_inverted_index.monitoring, | 58 |
| abstract_inverted_index.monitoring. | 64 |
| abstract_inverted_index.objectives, | 108 |
| abstract_inverted_index.programming | 264 |
| abstract_inverted_index.real-world, | 19 |
| abstract_inverted_index.requirement | 362 |
| abstract_inverted_index.signatures, | 30, 519 |
| abstract_inverted_index.significant | 40 |
| abstract_inverted_index.transformer | 483 |
| abstract_inverted_index.Interconnect | 559 |
| abstract_inverted_index.application, | 549 |
| abstract_inverted_index.associations | 500 |
| abstract_inverted_index.characterize | 455, 628 |
| abstract_inverted_index.environment. | 247 |
| abstract_inverted_index.large-scale, | 18, 613 |
| abstract_inverted_index.quantitative | 169 |
| abstract_inverted_index.readiness’ | 87 |
| abstract_inverted_index.Additionally, | 65 |
| abstract_inverted_index.Subsequently, | 248 |
| abstract_inverted_index.accommodating | 338 |
| abstract_inverted_index.approximately | 363 |
| abstract_inverted_index.comprehensive | 73 |
| abstract_inverted_index.cybersecurity | 63 |
| abstract_inverted_index.down-sampling | 341 |
| abstract_inverted_index.investigated. | 192 |
| abstract_inverted_index.investigation | 472, 487 |
| abstract_inverted_index.methodologies | 216 |
| abstract_inverted_index.overabundance | 154 |
| abstract_inverted_index.preprocessing | 231 |
| abstract_inverted_index.synchrophasor | 205, 297, 538 |
| abstract_inverted_index.aforementioned | 107 |
| abstract_inverted_index.classification | 530, 544, 570, 620 |
| abstract_inverted_index.identification | 116, 144, 165, 378, 422 |
| abstract_inverted_index.interconnects. | 336 |
| abstract_inverted_index.physics-based, | 284 |
| abstract_inverted_index.classification. | 133 |
| abstract_inverted_index.identification, | 159, 418 |
| abstract_inverted_index.semi-supervised | 136, 608 |
| abstract_inverted_index.signature-based | 526 |
| abstract_inverted_index.characterization | 415 |
| abstract_inverted_index.statistics-based | 285 |
| abstract_inverted_index.data-preprocessing, | 150 |
| abstract_inverted_index.industry-validated, | 135 |
| abstract_inverted_index.‘machine-learning | 86 |
| abstract_inverted_index.transformation-based | 287 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |