Phenotyping heart failure using model-based analysis and physiology-informed machine learning Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1101/2021.03.03.433748
To determine the underlying mechanistic differences between diagnoses of Heart Failure (HF) and specifically heart failure with reduced and preserved ejection fraction (HFrEF & HFpEF), a closed loop model of the cardiovascular system coupled with patient specific transthoracic echocardiography (TTE) and right heart catheterization (RHC) measures was used to identify key parameters representing cardiovascular hemodynamics. Thirty-one patient records (10 HFrEF, 21 HFpEF) were obtained from the Cardiovascular Health Improvement Project (CHIP) database at the University of Michigan. Model simulations were tuned to match RHC and TTE pressure, volume and cardiac output measures in each patient with average error between data and model of 4.87 ± 2%. The underlying physiological model parameters were then plotted against model-based norms and compared between the HFrEF and HFpEF group. Our results confirm that the main mechanistic parameter driving HFrEF is reduced left ventricular contractility, while for HFpEF a much wider underlying phenotype is presented. Conducting principal component analysis (PCA), k -means, and hierarchical clustering on the optimized model parameters, but not on clinical measures, shows a distinct group of HFpEF patients sharing characteristics with the HFrEF cohort, a second group that is distinct as HFpEF and a group that exhibits characteristics of both. Significant differences are observed ( p -value<.001) in left ventricular active contractility and left ventricular relaxation, when comparing HFpEF patients to those grouped as similar to HFrEF. These results suggest that cardiovascular system modeling of standard clinical data is able to phenotype and group HFpEF as different subdiagnoses, possibly elucidating patient-specific treatment strategies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2021.03.03.433748
- https://www.biorxiv.org/content/biorxiv/early/2021/03/04/2021.03.03.433748.full.pdf
- OA Status
- green
- Cited By
- 5
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3135240772
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3135240772Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2021.03.03.433748Digital Object Identifier
- Title
-
Phenotyping heart failure using model-based analysis and physiology-informed machine learningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-03-04Full publication date if available
- Authors
-
Edith Jones, E. Benjamin Randall, Scott L. Hummel, David M. Cameron, Daniel Beard, Brian E. CarlsonList of authors in order
- Landing page
-
https://doi.org/10.1101/2021.03.03.433748Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2021/03/04/2021.03.03.433748.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2021/03/04/2021.03.03.433748.full.pdfDirect OA link when available
- Concepts
-
Heart failure, Cardiology, Internal medicine, Contractility, Medicine, Heart failure with preserved ejection fraction, Ejection fraction, Hemodynamics, Cohort, Stroke volumeTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 1, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3135240772 |
|---|---|
| doi | https://doi.org/10.1101/2021.03.03.433748 |
| ids.doi | https://doi.org/10.1101/2021.03.03.433748 |
| ids.mag | 3135240772 |
| ids.openalex | https://openalex.org/W3135240772 |
| fwci | 0.70975727 |
| type | preprint |
| title | Phenotyping heart failure using model-based analysis and physiology-informed machine learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10821 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | Cardiovascular Function and Risk Factors |
| topics[1].id | https://openalex.org/T10198 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Heart Failure Treatment and Management |
| topics[2].id | https://openalex.org/T10675 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9927999973297119 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Mechanical Circulatory Support Devices |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778198053 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7695283889770508 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q181754 |
| concepts[0].display_name | Heart failure |
| concepts[1].id | https://openalex.org/C164705383 |
| concepts[1].level | 1 |
| concepts[1].score | 0.752670168876648 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[1].display_name | Cardiology |
| concepts[2].id | https://openalex.org/C126322002 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7326039671897888 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[2].display_name | Internal medicine |
| concepts[3].id | https://openalex.org/C39133596 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6719368100166321 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5165683 |
| concepts[3].display_name | Contractility |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6656415462493896 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C2777099384 |
| concepts[5].level | 4 |
| concepts[5].score | 0.6393321752548218 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3799239 |
| concepts[5].display_name | Heart failure with preserved ejection fraction |
| concepts[6].id | https://openalex.org/C78085059 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5550920963287354 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q641303 |
| concepts[6].display_name | Ejection fraction |
| concepts[7].id | https://openalex.org/C178853913 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4579334557056427 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1642137 |
| concepts[7].display_name | Hemodynamics |
| concepts[8].id | https://openalex.org/C72563966 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4563882350921631 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1303415 |
| concepts[8].display_name | Cohort |
| concepts[9].id | https://openalex.org/C80461066 |
| concepts[9].level | 4 |
| concepts[9].score | 0.42284464836120605 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1698533 |
| concepts[9].display_name | Stroke volume |
| keywords[0].id | https://openalex.org/keywords/heart-failure |
| keywords[0].score | 0.7695283889770508 |
| keywords[0].display_name | Heart failure |
| keywords[1].id | https://openalex.org/keywords/cardiology |
| keywords[1].score | 0.752670168876648 |
| keywords[1].display_name | Cardiology |
| keywords[2].id | https://openalex.org/keywords/internal-medicine |
| keywords[2].score | 0.7326039671897888 |
| keywords[2].display_name | Internal medicine |
| keywords[3].id | https://openalex.org/keywords/contractility |
| keywords[3].score | 0.6719368100166321 |
| keywords[3].display_name | Contractility |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.6656415462493896 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/heart-failure-with-preserved-ejection-fraction |
| keywords[5].score | 0.6393321752548218 |
| keywords[5].display_name | Heart failure with preserved ejection fraction |
| keywords[6].id | https://openalex.org/keywords/ejection-fraction |
| keywords[6].score | 0.5550920963287354 |
| keywords[6].display_name | Ejection fraction |
| keywords[7].id | https://openalex.org/keywords/hemodynamics |
| keywords[7].score | 0.4579334557056427 |
| keywords[7].display_name | Hemodynamics |
| keywords[8].id | https://openalex.org/keywords/cohort |
| keywords[8].score | 0.4563882350921631 |
| keywords[8].display_name | Cohort |
| keywords[9].id | https://openalex.org/keywords/stroke-volume |
| keywords[9].score | 0.42284464836120605 |
| keywords[9].display_name | Stroke volume |
| language | en |
| locations[0].id | doi:10.1101/2021.03.03.433748 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/03/04/2021.03.03.433748.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2021.03.03.433748 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5043213626 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4921-7978 |
| authorships[0].author.display_name | Edith Jones |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I27837315 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Molecular and Integrative Physiology, University of Michigan |
| authorships[0].institutions[0].id | https://openalex.org/I27837315 |
| authorships[0].institutions[0].ror | https://ror.org/00jmfr291 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I27837315 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Michigan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Edith Jones |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Molecular and Integrative Physiology, University of Michigan |
| authorships[1].author.id | https://openalex.org/A5067184581 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1669-4970 |
| authorships[1].author.display_name | E. Benjamin Randall |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I27837315 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Molecular and Integrative Physiology, University of Michigan |
| authorships[1].institutions[0].id | https://openalex.org/I27837315 |
| authorships[1].institutions[0].ror | https://ror.org/00jmfr291 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I27837315 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Michigan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | E. Benjamin Randall |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Molecular and Integrative Physiology, University of Michigan |
| authorships[2].author.id | https://openalex.org/A5066070606 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0924-3135 |
| authorships[2].author.display_name | Scott L. Hummel |
| authorships[2].countries | US |
| authorships[2].affiliations[0].raw_affiliation_string | Ann Arbor Veterans Affairs Health System |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I27837315 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Cardiovascular Medicine, University of Michigan |
| authorships[2].institutions[0].id | https://openalex.org/I27837315 |
| authorships[2].institutions[0].ror | https://ror.org/00jmfr291 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I27837315 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Michigan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Scott L. Hummel |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Ann Arbor Veterans Affairs Health System, Department of Cardiovascular Medicine, University of Michigan |
| authorships[3].author.id | https://openalex.org/A5103102454 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3791-9681 |
| authorships[3].author.display_name | David M. Cameron |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I27837315 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Cardiovascular Medicine, University of Michigan |
| authorships[3].institutions[0].id | https://openalex.org/I27837315 |
| authorships[3].institutions[0].ror | https://ror.org/00jmfr291 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I27837315 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Michigan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | David Cameron |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Cardiovascular Medicine, University of Michigan |
| authorships[4].author.id | https://openalex.org/A5054763364 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0974-2353 |
| authorships[4].author.display_name | Daniel Beard |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I27837315 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Molecular and Integrative Physiology, University of Michigan |
| authorships[4].institutions[0].id | https://openalex.org/I27837315 |
| authorships[4].institutions[0].ror | https://ror.org/00jmfr291 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I27837315 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Michigan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Daniel A. Beard |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Molecular and Integrative Physiology, University of Michigan |
| authorships[5].author.id | https://openalex.org/A5076010626 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1353-5907 |
| authorships[5].author.display_name | Brian E. Carlson |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I27837315 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Molecular and Integrative Physiology, University of Michigan |
| authorships[5].institutions[0].id | https://openalex.org/I27837315 |
| authorships[5].institutions[0].ror | https://ror.org/00jmfr291 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I27837315 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Michigan |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Brian E. Carlson |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Molecular and Integrative Physiology, University of Michigan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2021/03/04/2021.03.03.433748.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Phenotyping heart failure using model-based analysis and physiology-informed machine learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10821 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | Cardiovascular Function and Risk Factors |
| related_works | https://openalex.org/W2011390101, https://openalex.org/W4385397996, https://openalex.org/W3110630109, https://openalex.org/W2362689775, https://openalex.org/W2140789938, https://openalex.org/W4378907360, https://openalex.org/W2472550262, https://openalex.org/W1964708026, https://openalex.org/W4286592256, https://openalex.org/W3134834768 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2021.03.03.433748 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/03/04/2021.03.03.433748.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2021.03.03.433748 |
| primary_location.id | doi:10.1101/2021.03.03.433748 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/03/04/2021.03.03.433748.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2021.03.03.433748 |
| publication_date | 2021-03-04 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W602081701, https://openalex.org/W2220297385, https://openalex.org/W3000089361, https://openalex.org/W3022022625, https://openalex.org/W2612219720, https://openalex.org/W2113829060, https://openalex.org/W2150926065, https://openalex.org/W2748985481, https://openalex.org/W2082890993, https://openalex.org/W3095646911, https://openalex.org/W2209002211, https://openalex.org/W2001327399, https://openalex.org/W4292023222, https://openalex.org/W2026126704, https://openalex.org/W4249896096, https://openalex.org/W2129591408, https://openalex.org/W2556734317, https://openalex.org/W1968011284, https://openalex.org/W2753110969, https://openalex.org/W2137784332, https://openalex.org/W2947352113, https://openalex.org/W3032828068, https://openalex.org/W2213926659, https://openalex.org/W2983514274, https://openalex.org/W2063587866, https://openalex.org/W2101589741, https://openalex.org/W2971294569, https://openalex.org/W2033292054, https://openalex.org/W2015785181, https://openalex.org/W2016381774, https://openalex.org/W2085513975, https://openalex.org/W4211082352, https://openalex.org/W1511208491, https://openalex.org/W2127254785, https://openalex.org/W3099514962, https://openalex.org/W2119340816, https://openalex.org/W2124624517, https://openalex.org/W122121821, https://openalex.org/W50135966 |
| referenced_works_count | 39 |
| abstract_inverted_index.( | 204 |
| abstract_inverted_index.a | 26, 144, 172, 184, 193 |
| abstract_inverted_index.k | 156 |
| abstract_inverted_index.p | 205 |
| abstract_inverted_index.21 | 61 |
| abstract_inverted_index.To | 1 |
| abstract_inverted_index.as | 190, 223, 245 |
| abstract_inverted_index.at | 73 |
| abstract_inverted_index.in | 93, 207 |
| abstract_inverted_index.is | 136, 149, 188, 238 |
| abstract_inverted_index.of | 9, 30, 76, 103, 175, 198, 234 |
| abstract_inverted_index.on | 161, 168 |
| abstract_inverted_index.to | 49, 82, 220, 225, 240 |
| abstract_inverted_index.± | 105 |
| abstract_inverted_index.(10 | 59 |
| abstract_inverted_index.2%. | 106 |
| abstract_inverted_index.Our | 126 |
| abstract_inverted_index.RHC | 84 |
| abstract_inverted_index.TTE | 86 |
| abstract_inverted_index.The | 107 |
| abstract_inverted_index.and | 13, 19, 41, 85, 89, 101, 118, 123, 158, 192, 212, 242 |
| abstract_inverted_index.are | 202 |
| abstract_inverted_index.but | 166 |
| abstract_inverted_index.for | 142 |
| abstract_inverted_index.key | 51 |
| abstract_inverted_index.not | 167 |
| abstract_inverted_index.the | 3, 31, 66, 74, 121, 130, 162, 181 |
| abstract_inverted_index.was | 47 |
| abstract_inverted_index.(HF) | 12 |
| abstract_inverted_index.4.87 | 104 |
| abstract_inverted_index.able | 239 |
| abstract_inverted_index.data | 100, 237 |
| abstract_inverted_index.each | 94 |
| abstract_inverted_index.from | 65 |
| abstract_inverted_index.left | 138, 208, 213 |
| abstract_inverted_index.loop | 28 |
| abstract_inverted_index.main | 131 |
| abstract_inverted_index.much | 145 |
| abstract_inverted_index.that | 129, 187, 195, 230 |
| abstract_inverted_index.then | 113 |
| abstract_inverted_index.used | 48 |
| abstract_inverted_index.were | 63, 80, 112 |
| abstract_inverted_index.when | 216 |
| abstract_inverted_index.with | 17, 35, 96, 180 |
| abstract_inverted_index.& | 24 |
| abstract_inverted_index.(RHC) | 45 |
| abstract_inverted_index.(TTE) | 40 |
| abstract_inverted_index.HFpEF | 124, 143, 176, 191, 218, 244 |
| abstract_inverted_index.HFrEF | 122, 135, 182 |
| abstract_inverted_index.Heart | 10 |
| abstract_inverted_index.Model | 78 |
| abstract_inverted_index.These | 227 |
| abstract_inverted_index.both. | 199 |
| abstract_inverted_index.error | 98 |
| abstract_inverted_index.group | 174, 186, 194, 243 |
| abstract_inverted_index.heart | 15, 43 |
| abstract_inverted_index.match | 83 |
| abstract_inverted_index.model | 29, 102, 110, 164 |
| abstract_inverted_index.norms | 117 |
| abstract_inverted_index.right | 42 |
| abstract_inverted_index.shows | 171 |
| abstract_inverted_index.those | 221 |
| abstract_inverted_index.tuned | 81 |
| abstract_inverted_index.while | 141 |
| abstract_inverted_index.wider | 146 |
| abstract_inverted_index.(CHIP) | 71 |
| abstract_inverted_index.(HFrEF | 23 |
| abstract_inverted_index.(PCA), | 155 |
| abstract_inverted_index.HFpEF) | 62 |
| abstract_inverted_index.HFrEF, | 60 |
| abstract_inverted_index.HFrEF. | 226 |
| abstract_inverted_index.Health | 68 |
| abstract_inverted_index.active | 210 |
| abstract_inverted_index.closed | 27 |
| abstract_inverted_index.group. | 125 |
| abstract_inverted_index.output | 91 |
| abstract_inverted_index.second | 185 |
| abstract_inverted_index.system | 33, 232 |
| abstract_inverted_index.volume | 88 |
| abstract_inverted_index.-means, | 157 |
| abstract_inverted_index.Failure | 11 |
| abstract_inverted_index.HFpEF), | 25 |
| abstract_inverted_index.Project | 70 |
| abstract_inverted_index.against | 115 |
| abstract_inverted_index.average | 97 |
| abstract_inverted_index.between | 7, 99, 120 |
| abstract_inverted_index.cardiac | 90 |
| abstract_inverted_index.cohort, | 183 |
| abstract_inverted_index.confirm | 128 |
| abstract_inverted_index.coupled | 34 |
| abstract_inverted_index.driving | 134 |
| abstract_inverted_index.failure | 16 |
| abstract_inverted_index.grouped | 222 |
| abstract_inverted_index.patient | 36, 57, 95 |
| abstract_inverted_index.plotted | 114 |
| abstract_inverted_index.records | 58 |
| abstract_inverted_index.reduced | 18, 137 |
| abstract_inverted_index.results | 127, 228 |
| abstract_inverted_index.sharing | 178 |
| abstract_inverted_index.similar | 224 |
| abstract_inverted_index.suggest | 229 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.analysis | 154 |
| abstract_inverted_index.clinical | 169, 236 |
| abstract_inverted_index.compared | 119 |
| abstract_inverted_index.database | 72 |
| abstract_inverted_index.distinct | 173, 189 |
| abstract_inverted_index.ejection | 21 |
| abstract_inverted_index.exhibits | 196 |
| abstract_inverted_index.fraction | 22 |
| abstract_inverted_index.identify | 50 |
| abstract_inverted_index.measures | 46, 92 |
| abstract_inverted_index.modeling | 233 |
| abstract_inverted_index.observed | 203 |
| abstract_inverted_index.obtained | 64 |
| abstract_inverted_index.patients | 177, 219 |
| abstract_inverted_index.possibly | 248 |
| abstract_inverted_index.specific | 37 |
| abstract_inverted_index.standard | 235 |
| abstract_inverted_index.Michigan. | 77 |
| abstract_inverted_index.comparing | 217 |
| abstract_inverted_index.component | 153 |
| abstract_inverted_index.determine | 2 |
| abstract_inverted_index.diagnoses | 8 |
| abstract_inverted_index.different | 246 |
| abstract_inverted_index.measures, | 170 |
| abstract_inverted_index.optimized | 163 |
| abstract_inverted_index.parameter | 133 |
| abstract_inverted_index.phenotype | 148, 241 |
| abstract_inverted_index.preserved | 20 |
| abstract_inverted_index.pressure, | 87 |
| abstract_inverted_index.principal | 152 |
| abstract_inverted_index.treatment | 251 |
| abstract_inverted_index.Conducting | 151 |
| abstract_inverted_index.Thirty-one | 56 |
| abstract_inverted_index.University | 75 |
| abstract_inverted_index.clustering | 160 |
| abstract_inverted_index.parameters | 52, 111 |
| abstract_inverted_index.presented. | 150 |
| abstract_inverted_index.underlying | 4, 108, 147 |
| abstract_inverted_index.Improvement | 69 |
| abstract_inverted_index.Significant | 200 |
| abstract_inverted_index.differences | 6, 201 |
| abstract_inverted_index.elucidating | 249 |
| abstract_inverted_index.mechanistic | 5, 132 |
| abstract_inverted_index.model-based | 116 |
| abstract_inverted_index.parameters, | 165 |
| abstract_inverted_index.relaxation, | 215 |
| abstract_inverted_index.simulations | 79 |
| abstract_inverted_index.strategies. | 252 |
| abstract_inverted_index.ventricular | 139, 209, 214 |
| abstract_inverted_index.hierarchical | 159 |
| abstract_inverted_index.representing | 53 |
| abstract_inverted_index.specifically | 14 |
| abstract_inverted_index.contractility | 211 |
| abstract_inverted_index.hemodynamics. | 55 |
| abstract_inverted_index.physiological | 109 |
| abstract_inverted_index.subdiagnoses, | 247 |
| abstract_inverted_index.transthoracic | 38 |
| abstract_inverted_index.Cardiovascular | 67 |
| abstract_inverted_index.cardiovascular | 32, 54, 231 |
| abstract_inverted_index.contractility, | 140 |
| abstract_inverted_index.-value<.001) | 206 |
| abstract_inverted_index.catheterization | 44 |
| abstract_inverted_index.characteristics | 179, 197 |
| abstract_inverted_index.echocardiography | 39 |
| abstract_inverted_index.patient-specific | 250 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.69413112 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |