Physicians’ and Machine Learning Researchers’ Perspectives on Ethical Issues in the Early Development of Clinical Machine Learning Tools: Qualitative Interview Study (Preprint) Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.2196/preprints.47449
BACKGROUND Innovative tools leveraging artificial intelligence (AI) and machine learning (ML) are rapidly being developed for medicine, with new applications emerging in prediction, diagnosis, and treatment across a range of illnesses, patient populations, and clinical procedures. One barrier for successful innovation is the scarcity of research in the current literature seeking and analyzing the views of AI or ML researchers and physicians to support ethical guidance. OBJECTIVE This study aims to describe, using a qualitative approach, the landscape of ethical issues that AI or ML researchers and physicians with professional exposure to AI or ML tools observe or anticipate in the development and use of AI and ML in medicine. METHODS Semistructured interviews were used to facilitate in-depth, open-ended discussion, and a purposeful sampling technique was used to identify and recruit participants. We conducted 21 semistructured interviews with a purposeful sample of AI and ML researchers (n=10) and physicians (n=11). We asked interviewees about their views regarding ethical considerations related to the adoption of AI and ML in medicine. Interviews were transcribed and deidentified by members of our research team. Data analysis was guided by the principles of qualitative content analysis. This approach, in which transcribed data is broken down into descriptive units that are named and sorted based on their content, allows for the inductive emergence of codes directly from the data set. RESULTS Notably, both researchers and physicians articulated concerns regarding how AI and ML innovations are shaped in their early development (ie, the problem formulation stage). Considerations encompassed the assessment of research priorities and motivations, clarity and centeredness of clinical needs, professional and demographic diversity of research teams, and interdisciplinary knowledge generation and collaboration. Phase-1 ethical issues identified by interviewees were notably interdisciplinary in nature and invited questions regarding how to align priorities and values across disciplines and ensure clinical value throughout the development and implementation of medical AI and ML. Relatedly, interviewees suggested interdisciplinary solutions to these issues, for example, more resources to support knowledge generation and collaboration between developers and physicians, engagement with a broader range of stakeholders, and efforts to increase diversity in research broadly and within individual teams. CONCLUSIONS These qualitative findings help elucidate several ethical challenges anticipated or encountered in AI and ML for health care. Our study is unique in that its use of open-ended questions allowed interviewees to explore their sentiments and perspectives without overreliance on implicit assumptions about what AI and ML currently are or are not. This analysis, however, does not include the perspectives of other relevant stakeholder groups, such as patients, ethicists, industry researchers or representatives, or other health care professionals beyond physicians. Additional qualitative and quantitative research is needed to reproduce and build on these findings.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2196/preprints.47449
- OA Status
- gold
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4363647385
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4363647385Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2196/preprints.47449Digital Object Identifier
- Title
-
Physicians’ and Machine Learning Researchers’ Perspectives on Ethical Issues in the Early Development of Clinical Machine Learning Tools: Qualitative Interview Study (Preprint)Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-21Full publication date if available
- Authors
-
Jane Kim, Katie Ryan, Max Kasun, Justin Hogg, Laura B. Dunn, Laura Weiss RobertsList of authors in order
- Landing page
-
https://doi.org/10.2196/preprints.47449Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2196/preprints.47449Direct OA link when available
- Concepts
-
Preprint, Qualitative research, Artificial intelligence, Medical education, Sample (material), Ethical issues, Psychology, Medicine, Computer science, Engineering ethics, Engineering, Sociology, Social science, World Wide Web, Chromatography, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4363647385 |
|---|---|
| doi | https://doi.org/10.2196/preprints.47449 |
| ids.doi | https://doi.org/10.2196/preprints.47449 |
| ids.openalex | https://openalex.org/W4363647385 |
| fwci | |
| type | preprint |
| title | Physicians’ and Machine Learning Researchers’ Perspectives on Ethical Issues in the Early Development of Clinical Machine Learning Tools: Qualitative Interview Study (Preprint) |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11636 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2718 |
| topics[0].subfield.display_name | Health Informatics |
| topics[0].display_name | Artificial Intelligence in Healthcare and Education |
| topics[1].id | https://openalex.org/T10582 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9793999791145325 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2739 |
| topics[1].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[1].display_name | Ethics in Clinical Research |
| topics[2].id | https://openalex.org/T13555 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9502000212669373 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3600 |
| topics[2].subfield.display_name | General Health Professions |
| topics[2].display_name | Healthcare cost, quality, practices |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C43169469 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5719141960144043 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q580922 |
| concepts[0].display_name | Preprint |
| concepts[1].id | https://openalex.org/C190248442 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5682001113891602 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q839486 |
| concepts[1].display_name | Qualitative research |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5273595452308655 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C509550671 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4971154034137726 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q126945 |
| concepts[3].display_name | Medical education |
| concepts[4].id | https://openalex.org/C198531522 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4720624089241028 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[4].display_name | Sample (material) |
| concepts[5].id | https://openalex.org/C2986663376 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44097229838371277 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9465 |
| concepts[5].display_name | Ethical issues |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4330170154571533 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.331053227186203 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.32452988624572754 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C55587333 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2161705195903778 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1133029 |
| concepts[9].display_name | Engineering ethics |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.12687575817108154 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C144024400 |
| concepts[11].level | 0 |
| concepts[11].score | 0.12024867534637451 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[11].display_name | Sociology |
| concepts[12].id | https://openalex.org/C36289849 |
| concepts[12].level | 1 |
| concepts[12].score | 0.11585956811904907 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[12].display_name | Social science |
| concepts[13].id | https://openalex.org/C136764020 |
| concepts[13].level | 1 |
| concepts[13].score | 0.10976055264472961 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[13].display_name | World Wide Web |
| concepts[14].id | https://openalex.org/C43617362 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[14].display_name | Chromatography |
| concepts[15].id | https://openalex.org/C185592680 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[15].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/preprint |
| keywords[0].score | 0.5719141960144043 |
| keywords[0].display_name | Preprint |
| keywords[1].id | https://openalex.org/keywords/qualitative-research |
| keywords[1].score | 0.5682001113891602 |
| keywords[1].display_name | Qualitative research |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5273595452308655 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/medical-education |
| keywords[3].score | 0.4971154034137726 |
| keywords[3].display_name | Medical education |
| keywords[4].id | https://openalex.org/keywords/sample |
| keywords[4].score | 0.4720624089241028 |
| keywords[4].display_name | Sample (material) |
| keywords[5].id | https://openalex.org/keywords/ethical-issues |
| keywords[5].score | 0.44097229838371277 |
| keywords[5].display_name | Ethical issues |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.4330170154571533 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.331053227186203 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.32452988624572754 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/engineering-ethics |
| keywords[9].score | 0.2161705195903778 |
| keywords[9].display_name | Engineering ethics |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.12687575817108154 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/sociology |
| keywords[11].score | 0.12024867534637451 |
| keywords[11].display_name | Sociology |
| keywords[12].id | https://openalex.org/keywords/social-science |
| keywords[12].score | 0.11585956811904907 |
| keywords[12].display_name | Social science |
| keywords[13].id | https://openalex.org/keywords/world-wide-web |
| keywords[13].score | 0.10976055264472961 |
| keywords[13].display_name | World Wide Web |
| language | en |
| locations[0].id | doi:10.2196/preprints.47449 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2196/preprints.47449 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100614931 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1475-9822 |
| authorships[0].author.display_name | Jane Kim |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jane Paik Kim |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5074582024 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1437-3126 |
| authorships[1].author.display_name | Katie Ryan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Katie Ryan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5044672665 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6364-6234 |
| authorships[2].author.display_name | Max Kasun |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Max Kasun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5086482091 |
| authorships[3].author.orcid | https://orcid.org/0009-0005-9329-606X |
| authorships[3].author.display_name | Justin Hogg |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Justin Hogg |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5031071016 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5669-6244 |
| authorships[4].author.display_name | Laura B. Dunn |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Laura B Dunn |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5000506014 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4270-253X |
| authorships[5].author.display_name | Laura Weiss Roberts |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Laura Weiss Roberts |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2196/preprints.47449 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Physicians’ and Machine Learning Researchers’ Perspectives on Ethical Issues in the Early Development of Clinical Machine Learning Tools: Qualitative Interview Study (Preprint) |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11636 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2718 |
| primary_topic.subfield.display_name | Health Informatics |
| primary_topic.display_name | Artificial Intelligence in Healthcare and Education |
| related_works | https://openalex.org/W4229365511, https://openalex.org/W3131332557, https://openalex.org/W3045462960, https://openalex.org/W4286761081, https://openalex.org/W100995625, https://openalex.org/W1938807311, https://openalex.org/W4251903548, https://openalex.org/W4248254235, https://openalex.org/W4244404024, https://openalex.org/W2494664970 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2196/preprints.47449 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2196/preprints.47449 |
| primary_location.id | doi:10.2196/preprints.47449 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2196/preprints.47449 |
| publication_date | 2023-03-21 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4323314047, https://openalex.org/W3088672512, https://openalex.org/W3045848016, https://openalex.org/W2581465409, https://openalex.org/W3010274200, https://openalex.org/W4206154777, https://openalex.org/W2991354320, https://openalex.org/W2947445753, https://openalex.org/W4294266722, https://openalex.org/W2911336825, https://openalex.org/W4223913070, https://openalex.org/W3094937636, https://openalex.org/W3125473938, https://openalex.org/W1999068081, https://openalex.org/W2910347849, https://openalex.org/W4286491165, https://openalex.org/W3007819350, https://openalex.org/W4210620956, https://openalex.org/W3011882394, https://openalex.org/W3127032480, https://openalex.org/W2927642672, https://openalex.org/W3015333520, https://openalex.org/W2789970635, https://openalex.org/W3083901094, https://openalex.org/W2906994370, https://openalex.org/W3162614376 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 28, 76, 126, 143, 345 |
| abstract_inverted_index.21 | 139 |
| abstract_inverted_index.AI | 57, 85, 95, 108, 147, 169, 241, 318, 377, 409 |
| abstract_inverted_index.ML | 59, 87, 97, 110, 149, 171, 243, 379, 411 |
| abstract_inverted_index.We | 137, 155 |
| abstract_inverted_index.as | 431 |
| abstract_inverted_index.by | 179, 189, 288 |
| abstract_inverted_index.in | 22, 47, 102, 111, 172, 198, 247, 293, 355, 376, 387 |
| abstract_inverted_index.is | 42, 202, 385, 450 |
| abstract_inverted_index.of | 30, 45, 56, 81, 107, 146, 168, 181, 192, 222, 260, 268, 275, 316, 348, 391, 425 |
| abstract_inverted_index.on | 214, 404, 456 |
| abstract_inverted_index.or | 58, 86, 96, 100, 374, 414, 436, 438 |
| abstract_inverted_index.to | 63, 73, 94, 120, 132, 165, 300, 326, 333, 352, 396, 452 |
| abstract_inverted_index.ML. | 320 |
| abstract_inverted_index.One | 37 |
| abstract_inverted_index.Our | 383 |
| abstract_inverted_index.and | 8, 25, 34, 52, 61, 89, 105, 109, 125, 134, 148, 152, 170, 177, 211, 235, 242, 263, 266, 272, 278, 282, 295, 303, 307, 314, 319, 337, 341, 350, 358, 378, 400, 410, 447, 454 |
| abstract_inverted_index.are | 12, 209, 245, 413, 415 |
| abstract_inverted_index.for | 16, 39, 218, 329, 380 |
| abstract_inverted_index.how | 240, 299 |
| abstract_inverted_index.its | 389 |
| abstract_inverted_index.new | 19 |
| abstract_inverted_index.not | 421 |
| abstract_inverted_index.our | 182 |
| abstract_inverted_index.the | 43, 48, 54, 79, 103, 166, 190, 219, 226, 252, 258, 312, 423 |
| abstract_inverted_index.use | 106, 390 |
| abstract_inverted_index.was | 130, 187 |
| abstract_inverted_index.(AI) | 7 |
| abstract_inverted_index.(ML) | 11 |
| abstract_inverted_index.(ie, | 251 |
| abstract_inverted_index.Data | 185 |
| abstract_inverted_index.This | 70, 196, 417 |
| abstract_inverted_index.aims | 72 |
| abstract_inverted_index.both | 233 |
| abstract_inverted_index.care | 441 |
| abstract_inverted_index.data | 201, 227 |
| abstract_inverted_index.does | 420 |
| abstract_inverted_index.down | 204 |
| abstract_inverted_index.from | 225 |
| abstract_inverted_index.help | 368 |
| abstract_inverted_index.into | 205 |
| abstract_inverted_index.more | 331 |
| abstract_inverted_index.not. | 416 |
| abstract_inverted_index.set. | 228 |
| abstract_inverted_index.such | 430 |
| abstract_inverted_index.that | 84, 208, 388 |
| abstract_inverted_index.used | 119, 131 |
| abstract_inverted_index.were | 118, 175, 290 |
| abstract_inverted_index.what | 408 |
| abstract_inverted_index.with | 18, 91, 142, 344 |
| abstract_inverted_index.<sec> | 0, 68, 114, 230, 363 |
| abstract_inverted_index.These | 365 |
| abstract_inverted_index.about | 158, 407 |
| abstract_inverted_index.align | 301 |
| abstract_inverted_index.asked | 156 |
| abstract_inverted_index.based | 213 |
| abstract_inverted_index.being | 14 |
| abstract_inverted_index.build | 455 |
| abstract_inverted_index.care. | 382 |
| abstract_inverted_index.codes | 223 |
| abstract_inverted_index.early | 249 |
| abstract_inverted_index.named | 210 |
| abstract_inverted_index.other | 426, 439 |
| abstract_inverted_index.range | 29, 347 |
| abstract_inverted_index.study | 71, 384 |
| abstract_inverted_index.team. | 184 |
| abstract_inverted_index.their | 159, 215, 248, 398 |
| abstract_inverted_index.these | 327, 457 |
| abstract_inverted_index.tools | 3, 98 |
| abstract_inverted_index.units | 207 |
| abstract_inverted_index.using | 75 |
| abstract_inverted_index.value | 310 |
| abstract_inverted_index.views | 55, 160 |
| abstract_inverted_index.which | 199 |
| abstract_inverted_index.(n=10) | 151 |
| abstract_inverted_index.</sec> | 67, 113, 229, 362, 459 |
| abstract_inverted_index.across | 27, 305 |
| abstract_inverted_index.allows | 217 |
| abstract_inverted_index.beyond | 443 |
| abstract_inverted_index.broken | 203 |
| abstract_inverted_index.ensure | 308 |
| abstract_inverted_index.guided | 188 |
| abstract_inverted_index.health | 381, 440 |
| abstract_inverted_index.issues | 83, 286 |
| abstract_inverted_index.nature | 294 |
| abstract_inverted_index.needed | 451 |
| abstract_inverted_index.needs, | 270 |
| abstract_inverted_index.sample | 145 |
| abstract_inverted_index.shaped | 246 |
| abstract_inverted_index.sorted | 212 |
| abstract_inverted_index.teams, | 277 |
| abstract_inverted_index.teams. | 361 |
| abstract_inverted_index.unique | 386 |
| abstract_inverted_index.values | 304 |
| abstract_inverted_index.within | 359 |
| abstract_inverted_index.(n=11). | 154 |
| abstract_inverted_index.Phase-1 | 284 |
| abstract_inverted_index.allowed | 394 |
| abstract_inverted_index.barrier | 38 |
| abstract_inverted_index.between | 339 |
| abstract_inverted_index.broader | 346 |
| abstract_inverted_index.broadly | 357 |
| abstract_inverted_index.clarity | 265 |
| abstract_inverted_index.content | 194 |
| abstract_inverted_index.current | 49 |
| abstract_inverted_index.efforts | 351 |
| abstract_inverted_index.ethical | 65, 82, 162, 285, 371 |
| abstract_inverted_index.explore | 397 |
| abstract_inverted_index.groups, | 429 |
| abstract_inverted_index.include | 422 |
| abstract_inverted_index.invited | 296 |
| abstract_inverted_index.issues, | 328 |
| abstract_inverted_index.machine | 9 |
| abstract_inverted_index.medical | 317 |
| abstract_inverted_index.members | 180 |
| abstract_inverted_index.notably | 291 |
| abstract_inverted_index.observe | 99 |
| abstract_inverted_index.patient | 32 |
| abstract_inverted_index.rapidly | 13 |
| abstract_inverted_index.recruit | 135 |
| abstract_inverted_index.related | 164 |
| abstract_inverted_index.seeking | 51 |
| abstract_inverted_index.several | 370 |
| abstract_inverted_index.stage). | 255 |
| abstract_inverted_index.support | 64, 334 |
| abstract_inverted_index.without | 402 |
| abstract_inverted_index.Notably, | 232 |
| abstract_inverted_index.adoption | 167 |
| abstract_inverted_index.analysis | 186 |
| abstract_inverted_index.clinical | 35, 269, 309 |
| abstract_inverted_index.concerns | 238 |
| abstract_inverted_index.content, | 216 |
| abstract_inverted_index.directly | 224 |
| abstract_inverted_index.emerging | 21 |
| abstract_inverted_index.example, | 330 |
| abstract_inverted_index.exposure | 93 |
| abstract_inverted_index.findings | 367 |
| abstract_inverted_index.however, | 419 |
| abstract_inverted_index.identify | 133 |
| abstract_inverted_index.implicit | 405 |
| abstract_inverted_index.increase | 353 |
| abstract_inverted_index.industry | 434 |
| abstract_inverted_index.learning | 10 |
| abstract_inverted_index.relevant | 427 |
| abstract_inverted_index.research | 46, 183, 261, 276, 356, 449 |
| abstract_inverted_index.sampling | 128 |
| abstract_inverted_index.scarcity | 44 |
| abstract_inverted_index.analysis, | 418 |
| abstract_inverted_index.analysis. | 195 |
| abstract_inverted_index.analyzing | 53 |
| abstract_inverted_index.approach, | 78, 197 |
| abstract_inverted_index.conducted | 138 |
| abstract_inverted_index.currently | 412 |
| abstract_inverted_index.describe, | 74 |
| abstract_inverted_index.developed | 15 |
| abstract_inverted_index.diversity | 274, 354 |
| abstract_inverted_index.elucidate | 369 |
| abstract_inverted_index.emergence | 221 |
| abstract_inverted_index.findings. | 458 |
| abstract_inverted_index.guidance. | 66 |
| abstract_inverted_index.in-depth, | 122 |
| abstract_inverted_index.inductive | 220 |
| abstract_inverted_index.knowledge | 280, 335 |
| abstract_inverted_index.landscape | 80 |
| abstract_inverted_index.medicine, | 17 |
| abstract_inverted_index.medicine. | 112, 173 |
| abstract_inverted_index.patients, | 432 |
| abstract_inverted_index.questions | 297, 393 |
| abstract_inverted_index.regarding | 161, 239, 298 |
| abstract_inverted_index.reproduce | 453 |
| abstract_inverted_index.resources | 332 |
| abstract_inverted_index.solutions | 325 |
| abstract_inverted_index.suggested | 323 |
| abstract_inverted_index.technique | 129 |
| abstract_inverted_index.treatment | 26 |
| abstract_inverted_index.Additional | 445 |
| abstract_inverted_index.Innovative | 2 |
| abstract_inverted_index.Interviews | 174 |
| abstract_inverted_index.Relatedly, | 321 |
| abstract_inverted_index.anticipate | 101 |
| abstract_inverted_index.artificial | 5 |
| abstract_inverted_index.assessment | 259 |
| abstract_inverted_index.challenges | 372 |
| abstract_inverted_index.developers | 340 |
| abstract_inverted_index.diagnosis, | 24 |
| abstract_inverted_index.engagement | 343 |
| abstract_inverted_index.ethicists, | 433 |
| abstract_inverted_index.facilitate | 121 |
| abstract_inverted_index.generation | 281, 336 |
| abstract_inverted_index.identified | 287 |
| abstract_inverted_index.illnesses, | 31 |
| abstract_inverted_index.individual | 360 |
| abstract_inverted_index.innovation | 41 |
| abstract_inverted_index.interviews | 117, 141 |
| abstract_inverted_index.leveraging | 4 |
| abstract_inverted_index.literature | 50 |
| abstract_inverted_index.open-ended | 123, 392 |
| abstract_inverted_index.physicians | 62, 90, 153, 236 |
| abstract_inverted_index.principles | 191 |
| abstract_inverted_index.priorities | 262, 302 |
| abstract_inverted_index.purposeful | 127, 144 |
| abstract_inverted_index.sentiments | 399 |
| abstract_inverted_index.successful | 40 |
| abstract_inverted_index.throughout | 311 |
| abstract_inverted_index.anticipated | 373 |
| abstract_inverted_index.articulated | 237 |
| abstract_inverted_index.assumptions | 406 |
| abstract_inverted_index.demographic | 273 |
| abstract_inverted_index.descriptive | 206 |
| abstract_inverted_index.development | 104, 250, 313 |
| abstract_inverted_index.disciplines | 306 |
| abstract_inverted_index.discussion, | 124 |
| abstract_inverted_index.encompassed | 257 |
| abstract_inverted_index.encountered | 375 |
| abstract_inverted_index.innovations | 244 |
| abstract_inverted_index.physicians, | 342 |
| abstract_inverted_index.physicians. | 444 |
| abstract_inverted_index.prediction, | 23 |
| abstract_inverted_index.procedures. | 36 |
| abstract_inverted_index.qualitative | 77, 193, 366, 446 |
| abstract_inverted_index.researchers | 60, 88, 150, 234, 435 |
| abstract_inverted_index.stakeholder | 428 |
| abstract_inverted_index.transcribed | 176, 200 |
| abstract_inverted_index.applications | 20 |
| abstract_inverted_index.centeredness | 267 |
| abstract_inverted_index.deidentified | 178 |
| abstract_inverted_index.intelligence | 6 |
| abstract_inverted_index.interviewees | 157, 289, 322, 395 |
| abstract_inverted_index.motivations, | 264 |
| abstract_inverted_index.overreliance | 403 |
| abstract_inverted_index.perspectives | 401, 424 |
| abstract_inverted_index.populations, | 33 |
| abstract_inverted_index.professional | 92, 271 |
| abstract_inverted_index.quantitative | 448 |
| abstract_inverted_index.collaboration | 338 |
| abstract_inverted_index.participants. | 136 |
| abstract_inverted_index.professionals | 442 |
| abstract_inverted_index.stakeholders, | 349 |
| abstract_inverted_index.Considerations | 256 |
| abstract_inverted_index.Semistructured | 116 |
| abstract_inverted_index.collaboration. | 283 |
| abstract_inverted_index.considerations | 163 |
| abstract_inverted_index.implementation | 315 |
| abstract_inverted_index.semistructured | 140 |
| abstract_inverted_index.<i>problem | 253 |
| abstract_inverted_index.representatives, | 437 |
| abstract_inverted_index.interdisciplinary | 279, 292, 324 |
| abstract_inverted_index.formulation</i> | 254 |
| abstract_inverted_index.<title>METHODS</title> | 115 |
| abstract_inverted_index.<title>RESULTS</title> | 231 |
| abstract_inverted_index.<title>OBJECTIVE</title> | 69 |
| abstract_inverted_index.<title>BACKGROUND</title> | 1 |
| abstract_inverted_index.<title>CONCLUSIONS</title> | 364 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.01955572 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |