Physics-informed data-driven discovery of constitutive models with application to strain-rate-sensitive soft materials Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1007/s00466-024-02497-x
A novel data-driven constitutive modeling approach is proposed, which combines the physics-informed nature of modeling based on continuum thermodynamics with the benefits of machine learning. This approach is demonstrated on strain-rate-sensitive soft materials. This model is based on the viscous dissipation-based visco-hyperelasticity framework where the total stress is decomposed into volumetric, isochoric hyperelastic, and isochoric viscous overstress contributions. It is shown that each of these stress components can be written as linear combinations of the components of an irreducible integrity basis. Three Gaussian process regression-based surrogate models are trained (one per stress component) between principal invariants of strain and strain rate tensors and the corresponding coefficients of the integrity basis components. It is demonstrated that this type of model construction enforces key physics-based constraints on the predicted responses: the second law of thermodynamics, the principles of local action and determinism, objectivity, the balance of angular momentum, an assumed reference state, isotropy, and limited memory. The three surrogate models that constitute our constitutive model are evaluated by training them on small-size numerically generated data sets corresponding to a single deformation mode and then analyzing their predictions over a much wider testing regime comprising multiple deformation modes. Our physics-informed data-driven constitutive model predictions are compared with the corresponding predictions of classical continuum thermodynamics-based and purely data-driven models. It is shown that our surrogate models can reasonably capture the stress–strain-strain rate responses in both training and testing regimes and improve prediction accuracy, generalizability to multiple deformation modes, and compatibility with limited data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s00466-024-02497-x
- https://link.springer.com/content/pdf/10.1007/s00466-024-02497-x.pdf
- OA Status
- hybrid
- Cited By
- 19
- References
- 86
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399751499
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399751499Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s00466-024-02497-xDigital Object Identifier
- Title
-
Physics-informed data-driven discovery of constitutive models with application to strain-rate-sensitive soft materialsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-17Full publication date if available
- Authors
-
Kshitiz Upadhyay, Jan N. Fuhg, Nikolaos Bouklas, K.T. RameshList of authors in order
- Landing page
-
https://doi.org/10.1007/s00466-024-02497-xPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s00466-024-02497-x.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s00466-024-02497-x.pdfDirect OA link when available
- Concepts
-
Constitutive equation, Strain (injury), Strain rate, Materials science, Statistical physics, Computer science, Biology, Physics, Finite element method, Thermodynamics, Composite material, AnatomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 8Per-year citation counts (last 5 years)
- References (count)
-
86Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399751499 |
|---|---|
| doi | https://doi.org/10.1007/s00466-024-02497-x |
| ids.doi | https://doi.org/10.1007/s00466-024-02497-x |
| ids.openalex | https://openalex.org/W4399751499 |
| fwci | 6.9829933 |
| type | article |
| title | Physics-informed data-driven discovery of constitutive models with application to strain-rate-sensitive soft materials |
| awards[0].id | https://openalex.org/G7761962938 |
| awards[0].funder_id | https://openalex.org/F4320338279 |
| awards[0].display_name | |
| awards[0].funder_award_id | FA9550-22-1-0075 |
| awards[0].funder_display_name | Air Force Office of Scientific Research |
| awards[1].id | https://openalex.org/G7253826940 |
| awards[1].funder_id | https://openalex.org/F4320337359 |
| awards[1].display_name | |
| awards[1].funder_award_id | U01NS112120 |
| awards[1].funder_display_name | National Institute of Neurological Disorders and Stroke |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11366 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Elasticity and Material Modeling |
| topics[1].id | https://openalex.org/T11699 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9908999800682068 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | High-Velocity Impact and Material Behavior |
| topics[2].id | https://openalex.org/T10707 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9790999889373779 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Cellular and Composite Structures |
| funders[0].id | https://openalex.org/F4320337359 |
| funders[0].ror | https://ror.org/01s5ya894 |
| funders[0].display_name | National Institute of Neurological Disorders and Stroke |
| funders[1].id | https://openalex.org/F4320338279 |
| funders[1].ror | https://ror.org/011e9bt93 |
| funders[1].display_name | Air Force Office of Scientific Research |
| is_xpac | False |
| apc_list.value | 2790 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3590 |
| apc_paid.value | 2790 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3590 |
| concepts[0].id | https://openalex.org/C202973686 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6119145154953003 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1937401 |
| concepts[0].display_name | Constitutive equation |
| concepts[1].id | https://openalex.org/C2778022156 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5362951159477234 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q576145 |
| concepts[1].display_name | Strain (injury) |
| concepts[2].id | https://openalex.org/C149342994 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4449618458747864 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3181055 |
| concepts[2].display_name | Strain rate |
| concepts[3].id | https://openalex.org/C192562407 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3681064248085022 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[3].display_name | Materials science |
| concepts[4].id | https://openalex.org/C121864883 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3610100746154785 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[4].display_name | Statistical physics |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.33093810081481934 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3213304281234741 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3135131597518921 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C135628077 |
| concepts[8].level | 2 |
| concepts[8].score | 0.2889612317085266 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q220184 |
| concepts[8].display_name | Finite element method |
| concepts[9].id | https://openalex.org/C97355855 |
| concepts[9].level | 1 |
| concepts[9].score | 0.19621634483337402 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[9].display_name | Thermodynamics |
| concepts[10].id | https://openalex.org/C159985019 |
| concepts[10].level | 1 |
| concepts[10].score | 0.17904448509216309 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[10].display_name | Composite material |
| concepts[11].id | https://openalex.org/C105702510 |
| concepts[11].level | 1 |
| concepts[11].score | 0.09145668148994446 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q514 |
| concepts[11].display_name | Anatomy |
| keywords[0].id | https://openalex.org/keywords/constitutive-equation |
| keywords[0].score | 0.6119145154953003 |
| keywords[0].display_name | Constitutive equation |
| keywords[1].id | https://openalex.org/keywords/strain |
| keywords[1].score | 0.5362951159477234 |
| keywords[1].display_name | Strain (injury) |
| keywords[2].id | https://openalex.org/keywords/strain-rate |
| keywords[2].score | 0.4449618458747864 |
| keywords[2].display_name | Strain rate |
| keywords[3].id | https://openalex.org/keywords/materials-science |
| keywords[3].score | 0.3681064248085022 |
| keywords[3].display_name | Materials science |
| keywords[4].id | https://openalex.org/keywords/statistical-physics |
| keywords[4].score | 0.3610100746154785 |
| keywords[4].display_name | Statistical physics |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.33093810081481934 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.3213304281234741 |
| keywords[6].display_name | Biology |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.3135131597518921 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/finite-element-method |
| keywords[8].score | 0.2889612317085266 |
| keywords[8].display_name | Finite element method |
| keywords[9].id | https://openalex.org/keywords/thermodynamics |
| keywords[9].score | 0.19621634483337402 |
| keywords[9].display_name | Thermodynamics |
| keywords[10].id | https://openalex.org/keywords/composite-material |
| keywords[10].score | 0.17904448509216309 |
| keywords[10].display_name | Composite material |
| keywords[11].id | https://openalex.org/keywords/anatomy |
| keywords[11].score | 0.09145668148994446 |
| keywords[11].display_name | Anatomy |
| language | en |
| locations[0].id | doi:10.1007/s00466-024-02497-x |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S147854436 |
| locations[0].source.issn | 0178-7675, 1432-0924 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0178-7675 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computational Mechanics |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s00466-024-02497-x.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computational Mechanics |
| locations[0].landing_page_url | https://doi.org/10.1007/s00466-024-02497-x |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5010955872 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0800-4888 |
| authorships[0].author.display_name | Kshitiz Upadhyay |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I121820613 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA |
| authorships[0].institutions[0].id | https://openalex.org/I121820613 |
| authorships[0].institutions[0].ror | https://ror.org/05ect4e57 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I121820613 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Louisiana State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kshitiz Upadhyay |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA |
| authorships[1].author.id | https://openalex.org/A5058627053 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5986-3770 |
| authorships[1].author.display_name | Jan N. Fuhg |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[1].affiliations[0].raw_affiliation_string | Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14850, USA |
| authorships[1].institutions[0].id | https://openalex.org/I205783295 |
| authorships[1].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Cornell University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jan N. Fuhg |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14850, USA |
| authorships[2].author.id | https://openalex.org/A5063820996 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3349-5914 |
| authorships[2].author.display_name | Nikolaos Bouklas |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[2].affiliations[0].raw_affiliation_string | Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14850, USA |
| authorships[2].institutions[0].id | https://openalex.org/I205783295 |
| authorships[2].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Cornell University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nikolaos Bouklas |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14850, USA |
| authorships[3].author.id | https://openalex.org/A5033981216 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2659-4698 |
| authorships[3].author.display_name | K.T. Ramesh |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21210, USA |
| authorships[3].institutions[0].id | https://openalex.org/I145311948 |
| authorships[3].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Johns Hopkins University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | K. T. Ramesh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21210, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s00466-024-02497-x.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Physics-informed data-driven discovery of constitutive models with application to strain-rate-sensitive soft materials |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11366 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Elasticity and Material Modeling |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2935759653, https://openalex.org/W3105167352, https://openalex.org/W54078636, https://openalex.org/W2954470139, https://openalex.org/W1501425562, https://openalex.org/W2902782467, https://openalex.org/W2375536475, https://openalex.org/W130236280, https://openalex.org/W2065261343 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s00466-024-02497-x |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S147854436 |
| best_oa_location.source.issn | 0178-7675, 1432-0924 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0178-7675 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computational Mechanics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00466-024-02497-x.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computational Mechanics |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s00466-024-02497-x |
| primary_location.id | doi:10.1007/s00466-024-02497-x |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S147854436 |
| primary_location.source.issn | 0178-7675, 1432-0924 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0178-7675 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computational Mechanics |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00466-024-02497-x.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computational Mechanics |
| primary_location.landing_page_url | https://doi.org/10.1007/s00466-024-02497-x |
| publication_date | 2024-06-17 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4253538687, https://openalex.org/W4300262496, https://openalex.org/W2002185936, https://openalex.org/W2004320657, https://openalex.org/W2046284349, https://openalex.org/W1997144975, https://openalex.org/W2999772350, https://openalex.org/W3149234073, https://openalex.org/W3093832692, https://openalex.org/W3199814420, https://openalex.org/W4316369652, https://openalex.org/W4319878959, https://openalex.org/W4214813942, https://openalex.org/W3203198738, https://openalex.org/W4360615912, https://openalex.org/W3086358797, https://openalex.org/W3047597904, https://openalex.org/W2940666176, https://openalex.org/W3173528373, https://openalex.org/W2965177196, https://openalex.org/W2261676784, https://openalex.org/W2889287912, https://openalex.org/W4307154607, https://openalex.org/W2969418368, https://openalex.org/W4200627291, https://openalex.org/W3011127381, https://openalex.org/W2989322783, https://openalex.org/W2796326870, https://openalex.org/W2185713692, https://openalex.org/W4304783384, https://openalex.org/W2002999933, https://openalex.org/W1882529968, https://openalex.org/W2727198643, https://openalex.org/W1831554775, https://openalex.org/W180817851, https://openalex.org/W2153807301, https://openalex.org/W2099414609, https://openalex.org/W2080291094, https://openalex.org/W2142862873, https://openalex.org/W1979701617, https://openalex.org/W2082835621, https://openalex.org/W2775232250, https://openalex.org/W2082501327, https://openalex.org/W2149813937, https://openalex.org/W2159715948, https://openalex.org/W2790254441, https://openalex.org/W2329687153, https://openalex.org/W3208657742, https://openalex.org/W2040122641, https://openalex.org/W1992467835, https://openalex.org/W2012927879, https://openalex.org/W3035584910, https://openalex.org/W2609589781, https://openalex.org/W3160138438, https://openalex.org/W4300773905, https://openalex.org/W2062204750, https://openalex.org/W2558411832, https://openalex.org/W1502922572, https://openalex.org/W2618986055, https://openalex.org/W2169568641, https://openalex.org/W3062658395, https://openalex.org/W2043170151, https://openalex.org/W3091899588, https://openalex.org/W2041677452, https://openalex.org/W2899752078, https://openalex.org/W2049508106, https://openalex.org/W2224178519, https://openalex.org/W4280512236, https://openalex.org/W2895112247, https://openalex.org/W1969521796, https://openalex.org/W2121914249, https://openalex.org/W4301359164, https://openalex.org/W2006730584, https://openalex.org/W2178147694, https://openalex.org/W2545856467, https://openalex.org/W2030167931, https://openalex.org/W2138442969, https://openalex.org/W2067259893, https://openalex.org/W3163993681, https://openalex.org/W3092289799, https://openalex.org/W4248591540, https://openalex.org/W2181330169, https://openalex.org/W2280606320, https://openalex.org/W2060489052, https://openalex.org/W608535524, https://openalex.org/W2242464395 |
| referenced_works_count | 86 |
| abstract_inverted_index.A | 1 |
| abstract_inverted_index.a | 177, 187 |
| abstract_inverted_index.It | 59, 112, 216 |
| abstract_inverted_index.an | 78, 147 |
| abstract_inverted_index.as | 71 |
| abstract_inverted_index.be | 69 |
| abstract_inverted_index.by | 166 |
| abstract_inverted_index.in | 230 |
| abstract_inverted_index.is | 7, 28, 36, 48, 60, 113, 217 |
| abstract_inverted_index.of | 14, 23, 64, 74, 77, 97, 107, 118, 132, 136, 144, 208 |
| abstract_inverted_index.on | 17, 30, 38, 125, 169 |
| abstract_inverted_index.to | 176, 241 |
| abstract_inverted_index.Our | 196 |
| abstract_inverted_index.The | 155 |
| abstract_inverted_index.and | 54, 99, 103, 139, 152, 181, 212, 233, 236, 245 |
| abstract_inverted_index.are | 88, 164, 202 |
| abstract_inverted_index.can | 68, 223 |
| abstract_inverted_index.key | 122 |
| abstract_inverted_index.law | 131 |
| abstract_inverted_index.our | 161, 220 |
| abstract_inverted_index.per | 91 |
| abstract_inverted_index.the | 11, 21, 39, 45, 75, 104, 108, 126, 129, 134, 142, 205, 226 |
| abstract_inverted_index.(one | 90 |
| abstract_inverted_index.This | 26, 34 |
| abstract_inverted_index.both | 231 |
| abstract_inverted_index.data | 173 |
| abstract_inverted_index.each | 63 |
| abstract_inverted_index.into | 50 |
| abstract_inverted_index.mode | 180 |
| abstract_inverted_index.much | 188 |
| abstract_inverted_index.over | 186 |
| abstract_inverted_index.rate | 101, 228 |
| abstract_inverted_index.sets | 174 |
| abstract_inverted_index.soft | 32 |
| abstract_inverted_index.that | 62, 115, 159, 219 |
| abstract_inverted_index.them | 168 |
| abstract_inverted_index.then | 182 |
| abstract_inverted_index.this | 116 |
| abstract_inverted_index.type | 117 |
| abstract_inverted_index.with | 20, 204, 247 |
| abstract_inverted_index.Three | 82 |
| abstract_inverted_index.based | 16, 37 |
| abstract_inverted_index.basis | 110 |
| abstract_inverted_index.data. | 249 |
| abstract_inverted_index.local | 137 |
| abstract_inverted_index.model | 35, 119, 163, 200 |
| abstract_inverted_index.novel | 2 |
| abstract_inverted_index.shown | 61, 218 |
| abstract_inverted_index.their | 184 |
| abstract_inverted_index.these | 65 |
| abstract_inverted_index.three | 156 |
| abstract_inverted_index.total | 46 |
| abstract_inverted_index.where | 44 |
| abstract_inverted_index.which | 9 |
| abstract_inverted_index.wider | 189 |
| abstract_inverted_index.action | 138 |
| abstract_inverted_index.basis. | 81 |
| abstract_inverted_index.linear | 72 |
| abstract_inverted_index.models | 87, 158, 222 |
| abstract_inverted_index.modes, | 244 |
| abstract_inverted_index.modes. | 195 |
| abstract_inverted_index.nature | 13 |
| abstract_inverted_index.purely | 213 |
| abstract_inverted_index.regime | 191 |
| abstract_inverted_index.second | 130 |
| abstract_inverted_index.single | 178 |
| abstract_inverted_index.state, | 150 |
| abstract_inverted_index.strain | 98, 100 |
| abstract_inverted_index.stress | 47, 66, 92 |
| abstract_inverted_index.angular | 145 |
| abstract_inverted_index.assumed | 148 |
| abstract_inverted_index.balance | 143 |
| abstract_inverted_index.between | 94 |
| abstract_inverted_index.capture | 225 |
| abstract_inverted_index.improve | 237 |
| abstract_inverted_index.limited | 153, 248 |
| abstract_inverted_index.machine | 24 |
| abstract_inverted_index.memory. | 154 |
| abstract_inverted_index.models. | 215 |
| abstract_inverted_index.process | 84 |
| abstract_inverted_index.regimes | 235 |
| abstract_inverted_index.tensors | 102 |
| abstract_inverted_index.testing | 190, 234 |
| abstract_inverted_index.trained | 89 |
| abstract_inverted_index.viscous | 40, 56 |
| abstract_inverted_index.written | 70 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Gaussian | 83 |
| abstract_inverted_index.approach | 6, 27 |
| abstract_inverted_index.benefits | 22 |
| abstract_inverted_index.combines | 10 |
| abstract_inverted_index.compared | 203 |
| abstract_inverted_index.enforces | 121 |
| abstract_inverted_index.modeling | 5, 15 |
| abstract_inverted_index.multiple | 193, 242 |
| abstract_inverted_index.training | 167, 232 |
| abstract_inverted_index.accuracy, | 239 |
| abstract_inverted_index.analyzing | 183 |
| abstract_inverted_index.classical | 209 |
| abstract_inverted_index.continuum | 18, 210 |
| abstract_inverted_index.evaluated | 165 |
| abstract_inverted_index.framework | 43 |
| abstract_inverted_index.generated | 172 |
| abstract_inverted_index.integrity | 80, 109 |
| abstract_inverted_index.isochoric | 52, 55 |
| abstract_inverted_index.isotropy, | 151 |
| abstract_inverted_index.learning. | 25 |
| abstract_inverted_index.momentum, | 146 |
| abstract_inverted_index.predicted | 127 |
| abstract_inverted_index.principal | 95 |
| abstract_inverted_index.proposed, | 8 |
| abstract_inverted_index.reference | 149 |
| abstract_inverted_index.responses | 229 |
| abstract_inverted_index.surrogate | 86, 157, 221 |
| abstract_inverted_index.component) | 93 |
| abstract_inverted_index.components | 67, 76 |
| abstract_inverted_index.comprising | 192 |
| abstract_inverted_index.constitute | 160 |
| abstract_inverted_index.decomposed | 49 |
| abstract_inverted_index.invariants | 96 |
| abstract_inverted_index.materials. | 33 |
| abstract_inverted_index.overstress | 57 |
| abstract_inverted_index.prediction | 238 |
| abstract_inverted_index.principles | 135 |
| abstract_inverted_index.reasonably | 224 |
| abstract_inverted_index.responses: | 128 |
| abstract_inverted_index.small-size | 170 |
| abstract_inverted_index.components. | 111 |
| abstract_inverted_index.constraints | 124 |
| abstract_inverted_index.data-driven | 3, 198, 214 |
| abstract_inverted_index.deformation | 179, 194, 243 |
| abstract_inverted_index.irreducible | 79 |
| abstract_inverted_index.numerically | 171 |
| abstract_inverted_index.predictions | 185, 201, 207 |
| abstract_inverted_index.volumetric, | 51 |
| abstract_inverted_index.coefficients | 106 |
| abstract_inverted_index.combinations | 73 |
| abstract_inverted_index.constitutive | 4, 162, 199 |
| abstract_inverted_index.construction | 120 |
| abstract_inverted_index.demonstrated | 29, 114 |
| abstract_inverted_index.determinism, | 140 |
| abstract_inverted_index.objectivity, | 141 |
| abstract_inverted_index.compatibility | 246 |
| abstract_inverted_index.corresponding | 105, 175, 206 |
| abstract_inverted_index.hyperelastic, | 53 |
| abstract_inverted_index.physics-based | 123 |
| abstract_inverted_index.contributions. | 58 |
| abstract_inverted_index.thermodynamics | 19 |
| abstract_inverted_index.thermodynamics, | 133 |
| abstract_inverted_index.generalizability | 240 |
| abstract_inverted_index.physics-informed | 12, 197 |
| abstract_inverted_index.regression-based | 85 |
| abstract_inverted_index.dissipation-based | 41 |
| abstract_inverted_index.thermodynamics-based | 211 |
| abstract_inverted_index.strain-rate-sensitive | 31 |
| abstract_inverted_index.visco-hyperelasticity | 42 |
| abstract_inverted_index.stress–strain-strain | 227 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5010955872 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I121820613 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.95607087 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |