Physics-Informed Multimodal Bearing Fault Classification under Variable Operating Conditions using Transfer Learning Article Swipe
Accurate and interpretable bearing fault classification is critical for ensuring the reliability of rotating machinery, particularly under variable operating conditions where domain shifts can significantly degrade model performance. This study proposes a physics-informed multimodal convolutional neural network (CNN) with a late fusion architecture, integrating vibration and motor current signals alongside a dedicated physics-based feature extraction branch. The model incorporates a novel physics-informed loss function that penalizes physically implausible predictions based on characteristic bearing fault frequencies - Ball Pass Frequency Outer (BPFO) and Ball Pass Frequency Inner (BPFI) - derived from bearing geometry and shaft speed. Comprehensive experiments on the Paderborn University dataset demonstrate that the proposed physics-informed approach consistently outperforms a non-physics-informed baseline, achieving higher accuracy, reduced false classifications, and improved robustness across multiple data splits. To address performance degradation under unseen operating conditions, three transfer learning (TL) strategies - Target-Specific Fine-Tuning (TSFT), Layer-Wise Adaptation Strategy (LAS), and Hybrid Feature Reuse (HFR) - are evaluated. Results show that LAS yields the best generalization, with additional performance gains when combined with physics-informed modeling. Validation on the KAIST bearing dataset confirms the framework's cross-dataset applicability, achieving up to 98 percent accuracy. Statistical hypothesis testing further verifies significant improvements (p < 0.01) in classification performance. The proposed framework demonstrates the potential of integrating domain knowledge with data-driven learning to achieve robust, interpretable, and generalizable fault diagnosis for real-world industrial applications.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.07536
- https://arxiv.org/pdf/2508.07536
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416242525
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416242525Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2508.07536Digital Object Identifier
- Title
-
Physics-Informed Multimodal Bearing Fault Classification under Variable Operating Conditions using Transfer LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-11Full publication date if available
- Authors
-
Tasfiq E. AlamList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.07536Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.07536Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.07536Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416242525 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2508.07536 |
| ids.doi | https://doi.org/10.48550/arxiv.2508.07536 |
| ids.openalex | https://openalex.org/W4416242525 |
| fwci | |
| type | preprint |
| title | Physics-Informed Multimodal Bearing Fault Classification under Variable Operating Conditions using Transfer Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.07536 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.07536 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.07536 |
| locations[1].id | doi:10.48550/arxiv.2508.07536 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2508.07536 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5026423567 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7698-5745 |
| authorships[0].author.display_name | Tasfiq E. Alam |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alam, Tasfiq E. |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.07536 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Physics-Informed Multimodal Bearing Fault Classification under Variable Operating Conditions using Transfer Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T09:07:23.237538 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.07536 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.07536 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.07536 |
| primary_location.id | pmh:oai:arXiv.org:2508.07536 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.07536 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.07536 |
| publication_date | 2025-08-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 75, 87, 139, 152 |
| abstract_inverted_index.a | 31, 39, 50, 59, 110 |
| abstract_inverted_index.(p | 196 |
| abstract_inverted_index.98 | 186 |
| abstract_inverted_index.To | 126 |
| abstract_inverted_index.in | 199 |
| abstract_inverted_index.is | 6 |
| abstract_inverted_index.of | 12, 208 |
| abstract_inverted_index.on | 70, 97, 173 |
| abstract_inverted_index.to | 185, 215 |
| abstract_inverted_index.up | 184 |
| abstract_inverted_index.LAS | 158 |
| abstract_inverted_index.The | 56, 202 |
| abstract_inverted_index.and | 1, 45, 81, 92, 119, 147, 219 |
| abstract_inverted_index.are | 153 |
| abstract_inverted_index.can | 23 |
| abstract_inverted_index.for | 8, 223 |
| abstract_inverted_index.the | 10, 98, 104, 160, 174, 179, 206 |
| abstract_inverted_index.< | 197 |
| abstract_inverted_index.(TL) | 137 |
| abstract_inverted_index.Ball | 76, 82 |
| abstract_inverted_index.Pass | 77, 83 |
| abstract_inverted_index.This | 28 |
| abstract_inverted_index.best | 161 |
| abstract_inverted_index.data | 124 |
| abstract_inverted_index.from | 89 |
| abstract_inverted_index.late | 40 |
| abstract_inverted_index.loss | 62 |
| abstract_inverted_index.show | 156 |
| abstract_inverted_index.that | 64, 103, 157 |
| abstract_inverted_index.when | 167 |
| abstract_inverted_index.with | 38, 163, 169, 212 |
| abstract_inverted_index.(CNN) | 37 |
| abstract_inverted_index.(HFR) | 151 |
| abstract_inverted_index.0.01) | 198 |
| abstract_inverted_index.Inner | 85 |
| abstract_inverted_index.KAIST | 175 |
| abstract_inverted_index.Outer | 79 |
| abstract_inverted_index.Reuse | 150 |
| abstract_inverted_index.based | 69 |
| abstract_inverted_index.false | 117 |
| abstract_inverted_index.fault | 4, 73, 221 |
| abstract_inverted_index.gains | 166 |
| abstract_inverted_index.model | 26, 57 |
| abstract_inverted_index.motor | 46 |
| abstract_inverted_index.novel | 60 |
| abstract_inverted_index.shaft | 93 |
| abstract_inverted_index.study | 29 |
| abstract_inverted_index.three | 134 |
| abstract_inverted_index.under | 16, 130 |
| abstract_inverted_index.where | 20 |
| abstract_inverted_index.(BPFI) | 86 |
| abstract_inverted_index.(BPFO) | 80 |
| abstract_inverted_index.(LAS), | 146 |
| abstract_inverted_index.Hybrid | 148 |
| abstract_inverted_index.across | 122 |
| abstract_inverted_index.domain | 21, 210 |
| abstract_inverted_index.fusion | 41 |
| abstract_inverted_index.higher | 114 |
| abstract_inverted_index.neural | 35 |
| abstract_inverted_index.shifts | 22 |
| abstract_inverted_index.speed. | 94 |
| abstract_inverted_index.unseen | 131 |
| abstract_inverted_index.yields | 159 |
| abstract_inverted_index.(TSFT), | 142 |
| abstract_inverted_index.Feature | 149 |
| abstract_inverted_index.Results | 155 |
| abstract_inverted_index.achieve | 216 |
| abstract_inverted_index.address | 127 |
| abstract_inverted_index.bearing | 3, 72, 90, 176 |
| abstract_inverted_index.branch. | 55 |
| abstract_inverted_index.current | 47 |
| abstract_inverted_index.dataset | 101, 177 |
| abstract_inverted_index.degrade | 25 |
| abstract_inverted_index.derived | 88 |
| abstract_inverted_index.feature | 53 |
| abstract_inverted_index.further | 192 |
| abstract_inverted_index.network | 36 |
| abstract_inverted_index.percent | 187 |
| abstract_inverted_index.reduced | 116 |
| abstract_inverted_index.robust, | 217 |
| abstract_inverted_index.signals | 48 |
| abstract_inverted_index.splits. | 125 |
| abstract_inverted_index.testing | 191 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.Strategy | 145 |
| abstract_inverted_index.approach | 107 |
| abstract_inverted_index.combined | 168 |
| abstract_inverted_index.confirms | 178 |
| abstract_inverted_index.critical | 7 |
| abstract_inverted_index.ensuring | 9 |
| abstract_inverted_index.function | 63 |
| abstract_inverted_index.geometry | 91 |
| abstract_inverted_index.improved | 120 |
| abstract_inverted_index.learning | 136, 214 |
| abstract_inverted_index.multiple | 123 |
| abstract_inverted_index.proposed | 105, 203 |
| abstract_inverted_index.proposes | 30 |
| abstract_inverted_index.rotating | 13 |
| abstract_inverted_index.transfer | 135 |
| abstract_inverted_index.variable | 17 |
| abstract_inverted_index.verifies | 193 |
| abstract_inverted_index.Frequency | 78, 84 |
| abstract_inverted_index.Paderborn | 99 |
| abstract_inverted_index.accuracy, | 115 |
| abstract_inverted_index.accuracy. | 188 |
| abstract_inverted_index.achieving | 113, 183 |
| abstract_inverted_index.alongside | 49 |
| abstract_inverted_index.baseline, | 112 |
| abstract_inverted_index.dedicated | 51 |
| abstract_inverted_index.diagnosis | 222 |
| abstract_inverted_index.framework | 204 |
| abstract_inverted_index.knowledge | 211 |
| abstract_inverted_index.modeling. | 171 |
| abstract_inverted_index.operating | 18, 132 |
| abstract_inverted_index.penalizes | 65 |
| abstract_inverted_index.potential | 207 |
| abstract_inverted_index.vibration | 44 |
| abstract_inverted_index.Adaptation | 144 |
| abstract_inverted_index.Layer-Wise | 143 |
| abstract_inverted_index.University | 100 |
| abstract_inverted_index.Validation | 172 |
| abstract_inverted_index.additional | 164 |
| abstract_inverted_index.conditions | 19 |
| abstract_inverted_index.evaluated. | 154 |
| abstract_inverted_index.extraction | 54 |
| abstract_inverted_index.hypothesis | 190 |
| abstract_inverted_index.industrial | 225 |
| abstract_inverted_index.machinery, | 14 |
| abstract_inverted_index.multimodal | 33 |
| abstract_inverted_index.physically | 66 |
| abstract_inverted_index.real-world | 224 |
| abstract_inverted_index.robustness | 121 |
| abstract_inverted_index.strategies | 138 |
| abstract_inverted_index.Fine-Tuning | 141 |
| abstract_inverted_index.Statistical | 189 |
| abstract_inverted_index.conditions, | 133 |
| abstract_inverted_index.data-driven | 213 |
| abstract_inverted_index.degradation | 129 |
| abstract_inverted_index.demonstrate | 102 |
| abstract_inverted_index.experiments | 96 |
| abstract_inverted_index.framework's | 180 |
| abstract_inverted_index.frequencies | 74 |
| abstract_inverted_index.implausible | 67 |
| abstract_inverted_index.integrating | 43, 209 |
| abstract_inverted_index.outperforms | 109 |
| abstract_inverted_index.performance | 128, 165 |
| abstract_inverted_index.predictions | 68 |
| abstract_inverted_index.reliability | 11 |
| abstract_inverted_index.significant | 194 |
| abstract_inverted_index.consistently | 108 |
| abstract_inverted_index.demonstrates | 205 |
| abstract_inverted_index.improvements | 195 |
| abstract_inverted_index.incorporates | 58 |
| abstract_inverted_index.particularly | 15 |
| abstract_inverted_index.performance. | 27, 201 |
| abstract_inverted_index.Comprehensive | 95 |
| abstract_inverted_index.applications. | 226 |
| abstract_inverted_index.architecture, | 42 |
| abstract_inverted_index.convolutional | 34 |
| abstract_inverted_index.cross-dataset | 181 |
| abstract_inverted_index.generalizable | 220 |
| abstract_inverted_index.interpretable | 2 |
| abstract_inverted_index.physics-based | 52 |
| abstract_inverted_index.significantly | 24 |
| abstract_inverted_index.applicability, | 182 |
| abstract_inverted_index.characteristic | 71 |
| abstract_inverted_index.classification | 5, 200 |
| abstract_inverted_index.interpretable, | 218 |
| abstract_inverted_index.Target-Specific | 140 |
| abstract_inverted_index.generalization, | 162 |
| abstract_inverted_index.classifications, | 118 |
| abstract_inverted_index.physics-informed | 32, 61, 106, 170 |
| abstract_inverted_index.non-physics-informed | 111 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5026423567 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |