Physics-Informed Weighting Multi-Scale Deep Learning Inversion for Deep-Seated Fault Feature Identification: A Case Study of Aeromagnetic Data in the Dandong Region Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/app152212323
Magnetic inversion through three-dimensional (3D) susceptibility reconstruction can effectively identify the deep extension characteristics and structural variations in faults. Therefore, the reliability of inversion results from magnetic anomaly data is a key issue that must be addressed in fault detection and quantitative evaluation of fault activity. In recent years, deep neural network-driven magnetic data inversion methods have rapidly become a research focus in the field of geophysical magnetic data inversion. However, existing methods primarily rely on convolutional neural networks (CNNs), whose inherent local feature extraction capabilities limit their ability to model the spatial continuity of large-scale subsurface magnetic structures. Moreover, the general lack of prior physical constraints in these network models often leads to unreliable inversion results. To address these limitations, this paper proposes a physics-informed multi-scale deep learning inversion method for magnetic anomaly data. The method designs a dual-stream Transformer-CNN fusion module (TCFM). It leverages the self-attention mechanism in Transformers to model global susceptibility correlations while efficiently capturing local geological features through CNN convolutional operations. This enables collaborative modeling of multi-scale subsurface magnetic structures, significantly enhancing inversion accuracy. Furthermore, by incorporating deep physical priors, we design a depth-aware weighted loss function. By strengthening optimization constraints in deep regions, it effectively improves the vertical resolution of inversion models for deep magnetic structures. Comparative experiments with U-Net++ and Transformer demonstrate that the proposed method achieves smaller errors and higher inversion accuracy. Applied to measured aeromagnetic data from the Dandong region of China, the method yields reliable inversion results. Variations in magnetic susceptibility within these results successfully delineate the spatial distribution of fault zones, providing a geophysical basis for regional seismic hazard monitoring and assessment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app152212323
- OA Status
- gold
- References
- 33
- OpenAlex ID
- https://openalex.org/W4416414490
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416414490Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app152212323Digital Object Identifier
- Title
-
Physics-Informed Weighting Multi-Scale Deep Learning Inversion for Deep-Seated Fault Feature Identification: A Case Study of Aeromagnetic Data in the Dandong RegionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-20Full publication date if available
- Authors
-
Hongbo Ju, Xia Zhong, Jie Yang, Jian Jiao, Duo Wang, Ruiyao WangList of authors in order
- Landing page
-
https://doi.org/10.3390/app152212323Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/app152212323Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
33Number of works referenced by this work
Full payload
| id | https://openalex.org/W4416414490 |
|---|---|
| doi | https://doi.org/10.3390/app152212323 |
| ids.doi | https://doi.org/10.3390/app152212323 |
| ids.openalex | https://openalex.org/W4416414490 |
| fwci | |
| type | article |
| title | Physics-Informed Weighting Multi-Scale Deep Learning Inversion for Deep-Seated Fault Feature Identification: A Case Study of Aeromagnetic Data in the Dandong Region |
| biblio.issue | 22 |
| biblio.volume | 15 |
| biblio.last_page | 12323 |
| biblio.first_page | 12323 |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| language | en |
| locations[0].id | doi:10.3390/app152212323 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app152212323 |
| locations[1].id | pmh:oai:doaj.org/article:83611837ad3248c88b504ac90234e0c6 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 15, Iss 22, p 12323 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/83611837ad3248c88b504ac90234e0c6 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5004768135 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5982-3843 |
| authorships[0].author.display_name | Hongbo Ju |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210100745 |
| authorships[0].affiliations[0].raw_affiliation_string | Jiangsu Earthquake Agency, Nanjing 210014, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210100745 |
| authorships[0].institutions[0].ror | https://ror.org/0146tv827 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210100745, https://openalex.org/I90149893 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Heilongjiang Earthquake Agency |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haihua Ju |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Jiangsu Earthquake Agency, Nanjing 210014, China |
| authorships[1].author.id | https://openalex.org/A5100511623 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-9871-682X |
| authorships[1].author.display_name | Xia Zhong |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210100745 |
| authorships[1].affiliations[0].raw_affiliation_string | Jiangsu Earthquake Agency, Nanjing 210014, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210100745 |
| authorships[1].institutions[0].ror | https://ror.org/0146tv827 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210100745, https://openalex.org/I90149893 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Heilongjiang Earthquake Agency |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhong Xia |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Jiangsu Earthquake Agency, Nanjing 210014, China |
| authorships[2].author.id | https://openalex.org/A5100681896 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3706-2462 |
| authorships[2].author.display_name | Jie Yang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210100745 |
| authorships[2].affiliations[0].raw_affiliation_string | Jiangsu Earthquake Agency, Nanjing 210014, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210100745 |
| authorships[2].institutions[0].ror | https://ror.org/0146tv827 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210100745, https://openalex.org/I90149893 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Heilongjiang Earthquake Agency |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jie Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Jiangsu Earthquake Agency, Nanjing 210014, China |
| authorships[3].author.id | https://openalex.org/A5072552630 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0691-6901 |
| authorships[3].author.display_name | Jian Jiao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I194450716, https://openalex.org/I4210134929 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Geo-Exploration Science and Technology, Jilin University, Changchun 130012, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210134929 |
| authorships[3].institutions[0].ror | https://ror.org/049x38272 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210134929 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Jilin Province Science and Technology Department |
| authorships[3].institutions[1].id | https://openalex.org/I194450716 |
| authorships[3].institutions[1].ror | https://ror.org/00js3aw79 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I194450716 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Jilin University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jian Jiao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Geo-Exploration Science and Technology, Jilin University, Changchun 130012, China |
| authorships[4].author.id | https://openalex.org/A5082578225 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2923-8771 |
| authorships[4].author.display_name | Duo Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I194450716, https://openalex.org/I4210134929 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Geo-Exploration Science and Technology, Jilin University, Changchun 130012, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210134929 |
| authorships[4].institutions[0].ror | https://ror.org/049x38272 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210134929 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Jilin Province Science and Technology Department |
| authorships[4].institutions[1].id | https://openalex.org/I194450716 |
| authorships[4].institutions[1].ror | https://ror.org/00js3aw79 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I194450716 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Jilin University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Duo Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Geo-Exploration Science and Technology, Jilin University, Changchun 130012, China |
| authorships[5].author.id | https://openalex.org/A5108974467 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Ruiyao Wang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I194450716, https://openalex.org/I4210134929 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Geo-Exploration Science and Technology, Jilin University, Changchun 130012, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210134929 |
| authorships[5].institutions[0].ror | https://ror.org/049x38272 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210134929 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Jilin Province Science and Technology Department |
| authorships[5].institutions[1].id | https://openalex.org/I194450716 |
| authorships[5].institutions[1].ror | https://ror.org/00js3aw79 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I194450716 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Jilin University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Runqi Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Geo-Exploration Science and Technology, Jilin University, Changchun 130012, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/app152212323 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-20T00:00:00 |
| display_name | Physics-Informed Weighting Multi-Scale Deep Learning Inversion for Deep-Seated Fault Feature Identification: A Case Study of Aeromagnetic Data in the Dandong Region |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T23:14:17.795251 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/app152212323 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app152212323 |
| primary_location.id | doi:10.3390/app152212323 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app152212323 |
| publication_date | 2025-11-20 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2020219450, https://openalex.org/W2097897435, https://openalex.org/W2039157502, https://openalex.org/W2164289056, https://openalex.org/W1536568822, https://openalex.org/W929204220, https://openalex.org/W2332990274, https://openalex.org/W2150904297, https://openalex.org/W2146765527, https://openalex.org/W2194775991, https://openalex.org/W4205431410, https://openalex.org/W1901129140, https://openalex.org/W4391843301, https://openalex.org/W4225128112, https://openalex.org/W4404056517, https://openalex.org/W3208513980, https://openalex.org/W4404056499, https://openalex.org/W4394815371, https://openalex.org/W4383619805, https://openalex.org/W4389670631, https://openalex.org/W4297830370, https://openalex.org/W2160073004, https://openalex.org/W1624012152, https://openalex.org/W7103878228, https://openalex.org/W4416381366, https://openalex.org/W1498436455, https://openalex.org/W4213019189, https://openalex.org/W4407137784, https://openalex.org/W4372055032, https://openalex.org/W3014029212, https://openalex.org/W4413081749, https://openalex.org/W2034098157, https://openalex.org/W2891550783 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 30, 59, 124, 138, 187, 263 |
| abstract_inverted_index.By | 192 |
| abstract_inverted_index.In | 46 |
| abstract_inverted_index.It | 144 |
| abstract_inverted_index.To | 117 |
| abstract_inverted_index.be | 35 |
| abstract_inverted_index.by | 180 |
| abstract_inverted_index.in | 17, 37, 62, 107, 149, 196, 248 |
| abstract_inverted_index.is | 29 |
| abstract_inverted_index.it | 199 |
| abstract_inverted_index.of | 22, 43, 65, 94, 103, 170, 205, 239, 259 |
| abstract_inverted_index.on | 75 |
| abstract_inverted_index.to | 89, 113, 151, 231 |
| abstract_inverted_index.we | 185 |
| abstract_inverted_index.CNN | 163 |
| abstract_inverted_index.The | 135 |
| abstract_inverted_index.and | 14, 40, 216, 226, 271 |
| abstract_inverted_index.can | 7 |
| abstract_inverted_index.for | 131, 208, 266 |
| abstract_inverted_index.key | 31 |
| abstract_inverted_index.the | 10, 20, 63, 91, 100, 146, 202, 220, 236, 241, 256 |
| abstract_inverted_index.(3D) | 4 |
| abstract_inverted_index.This | 166 |
| abstract_inverted_index.data | 28, 53, 68, 234 |
| abstract_inverted_index.deep | 11, 49, 127, 182, 197, 209 |
| abstract_inverted_index.from | 25, 235 |
| abstract_inverted_index.have | 56 |
| abstract_inverted_index.lack | 102 |
| abstract_inverted_index.loss | 190 |
| abstract_inverted_index.must | 34 |
| abstract_inverted_index.rely | 74 |
| abstract_inverted_index.that | 33, 219 |
| abstract_inverted_index.this | 121 |
| abstract_inverted_index.with | 214 |
| abstract_inverted_index.basis | 265 |
| abstract_inverted_index.data. | 134 |
| abstract_inverted_index.fault | 38, 44, 260 |
| abstract_inverted_index.field | 64 |
| abstract_inverted_index.focus | 61 |
| abstract_inverted_index.issue | 32 |
| abstract_inverted_index.leads | 112 |
| abstract_inverted_index.limit | 86 |
| abstract_inverted_index.local | 82, 159 |
| abstract_inverted_index.model | 90, 152 |
| abstract_inverted_index.often | 111 |
| abstract_inverted_index.paper | 122 |
| abstract_inverted_index.prior | 104 |
| abstract_inverted_index.their | 87 |
| abstract_inverted_index.these | 108, 119, 252 |
| abstract_inverted_index.while | 156 |
| abstract_inverted_index.whose | 80 |
| abstract_inverted_index.China, | 240 |
| abstract_inverted_index.become | 58 |
| abstract_inverted_index.design | 186 |
| abstract_inverted_index.errors | 225 |
| abstract_inverted_index.fusion | 141 |
| abstract_inverted_index.global | 153 |
| abstract_inverted_index.hazard | 269 |
| abstract_inverted_index.higher | 227 |
| abstract_inverted_index.method | 130, 136, 222, 242 |
| abstract_inverted_index.models | 110, 207 |
| abstract_inverted_index.module | 142 |
| abstract_inverted_index.neural | 50, 77 |
| abstract_inverted_index.recent | 47 |
| abstract_inverted_index.region | 238 |
| abstract_inverted_index.within | 251 |
| abstract_inverted_index.years, | 48 |
| abstract_inverted_index.yields | 243 |
| abstract_inverted_index.zones, | 261 |
| abstract_inverted_index.(CNNs), | 79 |
| abstract_inverted_index.(TCFM). | 143 |
| abstract_inverted_index.Applied | 230 |
| abstract_inverted_index.Dandong | 237 |
| abstract_inverted_index.U-Net++ | 215 |
| abstract_inverted_index.ability | 88 |
| abstract_inverted_index.address | 118 |
| abstract_inverted_index.anomaly | 27, 133 |
| abstract_inverted_index.designs | 137 |
| abstract_inverted_index.enables | 167 |
| abstract_inverted_index.faults. | 18 |
| abstract_inverted_index.feature | 83 |
| abstract_inverted_index.general | 101 |
| abstract_inverted_index.methods | 55, 72 |
| abstract_inverted_index.network | 109 |
| abstract_inverted_index.priors, | 184 |
| abstract_inverted_index.rapidly | 57 |
| abstract_inverted_index.results | 24, 253 |
| abstract_inverted_index.seismic | 268 |
| abstract_inverted_index.smaller | 224 |
| abstract_inverted_index.spatial | 92, 257 |
| abstract_inverted_index.through | 2, 162 |
| abstract_inverted_index.However, | 70 |
| abstract_inverted_index.Magnetic | 0 |
| abstract_inverted_index.achieves | 223 |
| abstract_inverted_index.existing | 71 |
| abstract_inverted_index.features | 161 |
| abstract_inverted_index.identify | 9 |
| abstract_inverted_index.improves | 201 |
| abstract_inverted_index.inherent | 81 |
| abstract_inverted_index.learning | 128 |
| abstract_inverted_index.magnetic | 26, 52, 67, 97, 132, 173, 210, 249 |
| abstract_inverted_index.measured | 232 |
| abstract_inverted_index.modeling | 169 |
| abstract_inverted_index.networks | 78 |
| abstract_inverted_index.physical | 105, 183 |
| abstract_inverted_index.proposed | 221 |
| abstract_inverted_index.proposes | 123 |
| abstract_inverted_index.regional | 267 |
| abstract_inverted_index.regions, | 198 |
| abstract_inverted_index.reliable | 244 |
| abstract_inverted_index.research | 60 |
| abstract_inverted_index.results. | 116, 246 |
| abstract_inverted_index.vertical | 203 |
| abstract_inverted_index.weighted | 189 |
| abstract_inverted_index.Moreover, | 99 |
| abstract_inverted_index.accuracy. | 178, 229 |
| abstract_inverted_index.activity. | 45 |
| abstract_inverted_index.addressed | 36 |
| abstract_inverted_index.capturing | 158 |
| abstract_inverted_index.delineate | 255 |
| abstract_inverted_index.detection | 39 |
| abstract_inverted_index.enhancing | 176 |
| abstract_inverted_index.extension | 12 |
| abstract_inverted_index.function. | 191 |
| abstract_inverted_index.inversion | 1, 23, 54, 115, 129, 177, 206, 228, 245 |
| abstract_inverted_index.leverages | 145 |
| abstract_inverted_index.mechanism | 148 |
| abstract_inverted_index.primarily | 73 |
| abstract_inverted_index.providing | 262 |
| abstract_inverted_index.Therefore, | 19 |
| abstract_inverted_index.Variations | 247 |
| abstract_inverted_index.continuity | 93 |
| abstract_inverted_index.evaluation | 42 |
| abstract_inverted_index.extraction | 84 |
| abstract_inverted_index.geological | 160 |
| abstract_inverted_index.inversion. | 69 |
| abstract_inverted_index.monitoring | 270 |
| abstract_inverted_index.resolution | 204 |
| abstract_inverted_index.structural | 15 |
| abstract_inverted_index.subsurface | 96, 172 |
| abstract_inverted_index.unreliable | 114 |
| abstract_inverted_index.variations | 16 |
| abstract_inverted_index.Comparative | 212 |
| abstract_inverted_index.Transformer | 217 |
| abstract_inverted_index.assessment. | 272 |
| abstract_inverted_index.constraints | 106, 195 |
| abstract_inverted_index.demonstrate | 218 |
| abstract_inverted_index.depth-aware | 188 |
| abstract_inverted_index.dual-stream | 139 |
| abstract_inverted_index.effectively | 8, 200 |
| abstract_inverted_index.efficiently | 157 |
| abstract_inverted_index.experiments | 213 |
| abstract_inverted_index.geophysical | 66, 264 |
| abstract_inverted_index.large-scale | 95 |
| abstract_inverted_index.multi-scale | 126, 171 |
| abstract_inverted_index.operations. | 165 |
| abstract_inverted_index.reliability | 21 |
| abstract_inverted_index.structures, | 174 |
| abstract_inverted_index.structures. | 98, 211 |
| abstract_inverted_index.Furthermore, | 179 |
| abstract_inverted_index.Transformers | 150 |
| abstract_inverted_index.aeromagnetic | 233 |
| abstract_inverted_index.capabilities | 85 |
| abstract_inverted_index.correlations | 155 |
| abstract_inverted_index.distribution | 258 |
| abstract_inverted_index.limitations, | 120 |
| abstract_inverted_index.optimization | 194 |
| abstract_inverted_index.quantitative | 41 |
| abstract_inverted_index.successfully | 254 |
| abstract_inverted_index.collaborative | 168 |
| abstract_inverted_index.convolutional | 76, 164 |
| abstract_inverted_index.incorporating | 181 |
| abstract_inverted_index.significantly | 175 |
| abstract_inverted_index.strengthening | 193 |
| abstract_inverted_index.network-driven | 51 |
| abstract_inverted_index.reconstruction | 6 |
| abstract_inverted_index.self-attention | 147 |
| abstract_inverted_index.susceptibility | 5, 154, 250 |
| abstract_inverted_index.Transformer-CNN | 140 |
| abstract_inverted_index.characteristics | 13 |
| abstract_inverted_index.physics-informed | 125 |
| abstract_inverted_index.three-dimensional | 3 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |