Physics Performance of the ATLAS GNN4ITk Track Reconstruction Chain Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1051/epjconf/202429503030
Particle tracking is vital for the ATLAS physics programs. To cope with the increased number of particles in the High Luminosity LHC, ATLAS is building a new all-silicon Inner Tracker (ITk), consisting of a Pixel and a Strip subdetector. At the same time, ATLAS is developing new track reconstruction algorithms that can operate in the HL-LHC dense environment. A track reconstruction algorithm needs to solve two problems: track finding for building track candidates and track fitting for obtaining track parameters of those track candidates. Previously, we developed GNN4ITk, a track-finding algorithm based on a Graph Neural Network (GNN), and achieved good track-finding performance under realistic HL-LHC conditions. Our GNN pipeline relied only on the 3D spacepoint positions. This work introduces heterogeneous GNN models to fully exploit the subdetector-dependent features of ITk data, improving the performance of our GNN4ITk pipeline. In addition, we interfaced our pipeline to the standard ATLAS track-fitting algorithm and data model. With that, the GNN4ITk pipeline produces full-fledged track candidates that can be used for any downstream analyses and compared with the other track reconstruction algorithms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1051/epjconf/202429503030
- https://www.epj-conferences.org/articles/epjconf/pdf/2024/05/epjconf_chep2024_03030.pdf
- OA Status
- diamond
- Cited By
- 7
- References
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396662081
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396662081Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1051/epjconf/202429503030Digital Object Identifier
- Title
-
Physics Performance of the ATLAS GNN4ITk Track Reconstruction ChainWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Sylvain Caillou, P. Calafiura, X. Ju, Daniel Murnane, Tuan Q. Pham, C. Rougier, Jan Stark, A. VallierList of authors in order
- Landing page
-
https://doi.org/10.1051/epjconf/202429503030Publisher landing page
- PDF URL
-
https://www.epj-conferences.org/articles/epjconf/pdf/2024/05/epjconf_chep2024_03030.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.epj-conferences.org/articles/epjconf/pdf/2024/05/epjconf_chep2024_03030.pdfDirect OA link when available
- Concepts
-
Large Hadron Collider, Atlas (anatomy), Track (disk drive), ATLAS experiment, Pipeline (software), Tracking (education), Computer science, Algorithm, Real-time computing, Artificial intelligence, Computer vision, Physics, Particle physics, Operating system, Programming language, Pedagogy, Psychology, Paleontology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
3Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396662081 |
|---|---|
| doi | https://doi.org/10.1051/epjconf/202429503030 |
| ids.doi | https://doi.org/10.1051/epjconf/202429503030 |
| ids.openalex | https://openalex.org/W4396662081 |
| fwci | 5.73351673 |
| type | article |
| title | Physics Performance of the ATLAS GNN4ITk Track Reconstruction Chain |
| biblio.issue | |
| biblio.volume | 295 |
| biblio.last_page | 03030 |
| biblio.first_page | 03030 |
| topics[0].id | https://openalex.org/T10522 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Medical Imaging Techniques and Applications |
| topics[1].id | https://openalex.org/T10048 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3106 |
| topics[1].subfield.display_name | Nuclear and High Energy Physics |
| topics[1].display_name | Particle physics theoretical and experimental studies |
| topics[2].id | https://openalex.org/T11044 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9958999752998352 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3106 |
| topics[2].subfield.display_name | Nuclear and High Energy Physics |
| topics[2].display_name | Particle Detector Development and Performance |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C87668248 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8462080955505371 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q40605 |
| concepts[0].display_name | Large Hadron Collider |
| concepts[1].id | https://openalex.org/C2776673561 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7673963308334351 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q655357 |
| concepts[1].display_name | Atlas (anatomy) |
| concepts[2].id | https://openalex.org/C89992363 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7577164173126221 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5961558 |
| concepts[2].display_name | Track (disk drive) |
| concepts[3].id | https://openalex.org/C2777065543 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6898226737976074 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q299002 |
| concepts[3].display_name | ATLAS experiment |
| concepts[4].id | https://openalex.org/C43521106 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6108450293540955 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[4].display_name | Pipeline (software) |
| concepts[5].id | https://openalex.org/C2775936607 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5549858808517456 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q466845 |
| concepts[5].display_name | Tracking (education) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5320340991020203 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38523057103157043 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C79403827 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3658517599105835 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[8].display_name | Real-time computing |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.332933247089386 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32682135701179504 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.28481602668762207 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C109214941 |
| concepts[12].level | 1 |
| concepts[12].score | 0.265267014503479 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q18334 |
| concepts[12].display_name | Particle physics |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C19417346 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[15].display_name | Pedagogy |
| concepts[16].id | https://openalex.org/C15744967 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[16].display_name | Psychology |
| concepts[17].id | https://openalex.org/C151730666 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[17].display_name | Paleontology |
| concepts[18].id | https://openalex.org/C86803240 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[18].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/large-hadron-collider |
| keywords[0].score | 0.8462080955505371 |
| keywords[0].display_name | Large Hadron Collider |
| keywords[1].id | https://openalex.org/keywords/atlas |
| keywords[1].score | 0.7673963308334351 |
| keywords[1].display_name | Atlas (anatomy) |
| keywords[2].id | https://openalex.org/keywords/track |
| keywords[2].score | 0.7577164173126221 |
| keywords[2].display_name | Track (disk drive) |
| keywords[3].id | https://openalex.org/keywords/atlas-experiment |
| keywords[3].score | 0.6898226737976074 |
| keywords[3].display_name | ATLAS experiment |
| keywords[4].id | https://openalex.org/keywords/pipeline |
| keywords[4].score | 0.6108450293540955 |
| keywords[4].display_name | Pipeline (software) |
| keywords[5].id | https://openalex.org/keywords/tracking |
| keywords[5].score | 0.5549858808517456 |
| keywords[5].display_name | Tracking (education) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5320340991020203 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.38523057103157043 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/real-time-computing |
| keywords[8].score | 0.3658517599105835 |
| keywords[8].display_name | Real-time computing |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.332933247089386 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.32682135701179504 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.28481602668762207 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/particle-physics |
| keywords[12].score | 0.265267014503479 |
| keywords[12].display_name | Particle physics |
| language | en |
| locations[0].id | doi:10.1051/epjconf/202429503030 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S19068271 |
| locations[0].source.issn | 2100-014X, 2101-6275 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2100-014X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | EPJ Web of Conferences |
| locations[0].source.host_organization | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_name | EDP Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_lineage_names | EDP Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.epj-conferences.org/articles/epjconf/pdf/2024/05/epjconf_chep2024_03030.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | EPJ Web of Conferences |
| locations[0].landing_page_url | https://doi.org/10.1051/epjconf/202429503030 |
| locations[1].id | pmh:oai:HAL:hal-04570470v1 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306402512 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[1].source.host_organization | https://openalex.org/I1294671590 |
| locations[1].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[1].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Conference papers |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | 26th International Conference on Computing in High Energy & Nuclear Physics, May 2023, Norfolk, United States. pp.03030, ⟨10.1051/epjconf/202429503030⟩ |
| locations[1].landing_page_url | https://hal.science/hal-04570470 |
| locations[2].id | pmh:oai:cds.cern.ch:2871986 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306402194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | CERN Document Server (European Organization for Nuclear Research) |
| locations[2].source.host_organization | https://openalex.org/I67311998 |
| locations[2].source.host_organization_name | European Organization for Nuclear Research |
| locations[2].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://cds.cern.ch/record/2871986 |
| locations[3].id | pmh:oai:cds.cern.ch:2882507 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306402194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | CERN Document Server (European Organization for Nuclear Research) |
| locations[3].source.host_organization | https://openalex.org/I67311998 |
| locations[3].source.host_organization_name | European Organization for Nuclear Research |
| locations[3].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | http://cds.cern.ch/record/2882507 |
| locations[4].id | pmh:oai:doaj.org/article:5825d8225f2b49bd970ac1e07cc7241b |
| locations[4].is_oa | False |
| locations[4].source.id | https://openalex.org/S4306401280 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[4].source.host_organization | |
| locations[4].source.host_organization_name | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | article |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | EPJ Web of Conferences, Vol 295, p 03030 (2024) |
| locations[4].landing_page_url | https://doaj.org/article/5825d8225f2b49bd970ac1e07cc7241b |
| locations[5].id | pmh:oai:edpsciences.org:dkey/10.1051/epjconf/202429503030 |
| locations[5].is_oa | False |
| locations[5].source.id | https://openalex.org/S4306400744 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | Springer Link (Chiba Institute of Technology) |
| locations[5].source.host_organization | https://openalex.org/I8488066 |
| locations[5].source.host_organization_name | Chiba Institute of Technology |
| locations[5].source.host_organization_lineage | https://openalex.org/I8488066 |
| locations[5].license | |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Text |
| locations[5].license_id | |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | https://doi.org/10.1051/epjconf/202429503030 |
| locations[5].landing_page_url | |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5057058202 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sylvain Caillou |
| authorships[0].affiliations[0].raw_affiliation_string | L2IT, Laboratoire des 2 Infinis—Toulouse, Toulouse, France |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sylvain Caillou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | L2IT, Laboratoire des 2 Infinis—Toulouse, Toulouse, France |
| authorships[1].author.id | https://openalex.org/A5048738722 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1692-1678 |
| authorships[1].author.display_name | P. Calafiura |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I148283060 |
| authorships[1].affiliations[0].raw_affiliation_string | Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA |
| authorships[1].institutions[0].id | https://openalex.org/I148283060 |
| authorships[1].institutions[0].ror | https://ror.org/02jbv0t02 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I148283060, https://openalex.org/I39565521 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Lawrence Berkeley National Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Paolo Calafiura |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA |
| authorships[2].author.id | https://openalex.org/A5030716890 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9745-1638 |
| authorships[2].author.display_name | X. Ju |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I148283060 |
| authorships[2].affiliations[0].raw_affiliation_string | Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA |
| authorships[2].institutions[0].id | https://openalex.org/I148283060 |
| authorships[2].institutions[0].ror | https://ror.org/02jbv0t02 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I148283060, https://openalex.org/I39565521 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Lawrence Berkeley National Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiangyang Ju |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA |
| authorships[3].author.id | https://openalex.org/A5011421008 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4046-4822 |
| authorships[3].author.display_name | Daniel Murnane |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I148283060 |
| authorships[3].affiliations[0].raw_affiliation_string | Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA |
| authorships[3].institutions[0].id | https://openalex.org/I148283060 |
| authorships[3].institutions[0].ror | https://ror.org/02jbv0t02 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I148283060, https://openalex.org/I39565521 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Lawrence Berkeley National Laboratory |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Daniel Murnane |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA |
| authorships[4].author.id | https://openalex.org/A5104013221 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Tuan Q. Pham |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[4].affiliations[0].raw_affiliation_string | Physics Department, University of Wisconsin-Madison, Madison, WI 53706, USA |
| authorships[4].institutions[0].id | https://openalex.org/I135310074 |
| authorships[4].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tuan Pham |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Physics Department, University of Wisconsin-Madison, Madison, WI 53706, USA |
| authorships[5].author.id | https://openalex.org/A5048772261 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9853-7468 |
| authorships[5].author.display_name | C. Rougier |
| authorships[5].affiliations[0].raw_affiliation_string | L2IT, Laboratoire des 2 Infinis—Toulouse, Toulouse, France |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Charline Rougier |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | L2IT, Laboratoire des 2 Infinis—Toulouse, Toulouse, France |
| authorships[6].author.id | https://openalex.org/A5107448823 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Jan Stark |
| authorships[6].affiliations[0].raw_affiliation_string | L2IT, Laboratoire des 2 Infinis—Toulouse, Toulouse, France |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jan Stark |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | L2IT, Laboratoire des 2 Infinis—Toulouse, Toulouse, France |
| authorships[7].author.id | https://openalex.org/A5105626326 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5496-349X |
| authorships[7].author.display_name | A. Vallier |
| authorships[7].affiliations[0].raw_affiliation_string | L2IT, Laboratoire des 2 Infinis—Toulouse, Toulouse, France |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Alexis Vallier |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | L2IT, Laboratoire des 2 Infinis—Toulouse, Toulouse, France |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.epj-conferences.org/articles/epjconf/pdf/2024/05/epjconf_chep2024_03030.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Physics Performance of the ATLAS GNN4ITk Track Reconstruction Chain |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10522 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Medical Imaging Techniques and Applications |
| related_works | https://openalex.org/W1644076739, https://openalex.org/W4293578226, https://openalex.org/W4210623817, https://openalex.org/W2990738608, https://openalex.org/W2091392842, https://openalex.org/W2137889676, https://openalex.org/W3022699788, https://openalex.org/W2030062922, https://openalex.org/W2083209709, https://openalex.org/W1982445296 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 6 |
| best_oa_location.id | doi:10.1051/epjconf/202429503030 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S19068271 |
| best_oa_location.source.issn | 2100-014X, 2101-6275 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2100-014X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | EPJ Web of Conferences |
| best_oa_location.source.host_organization | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_name | EDP Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_lineage_names | EDP Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.epj-conferences.org/articles/epjconf/pdf/2024/05/epjconf_chep2024_03030.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | EPJ Web of Conferences |
| best_oa_location.landing_page_url | https://doi.org/10.1051/epjconf/202429503030 |
| primary_location.id | doi:10.1051/epjconf/202429503030 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S19068271 |
| primary_location.source.issn | 2100-014X, 2101-6275 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2100-014X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | EPJ Web of Conferences |
| primary_location.source.host_organization | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_name | EDP Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_lineage_names | EDP Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.epj-conferences.org/articles/epjconf/pdf/2024/05/epjconf_chep2024_03030.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | EPJ Web of Conferences |
| primary_location.landing_page_url | https://doi.org/10.1051/epjconf/202429503030 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2613749828, https://openalex.org/W2471744027, https://openalex.org/W3113376737 |
| referenced_works_count | 3 |
| abstract_inverted_index.A | 58 |
| abstract_inverted_index.a | 25, 33, 36, 88, 93 |
| abstract_inverted_index.3D | 114 |
| abstract_inverted_index.At | 39 |
| abstract_inverted_index.In | 139 |
| abstract_inverted_index.To | 9 |
| abstract_inverted_index.be | 165 |
| abstract_inverted_index.in | 17, 53 |
| abstract_inverted_index.is | 2, 23, 44 |
| abstract_inverted_index.of | 15, 32, 80, 129, 135 |
| abstract_inverted_index.on | 92, 112 |
| abstract_inverted_index.to | 63, 123, 145 |
| abstract_inverted_index.we | 85, 141 |
| abstract_inverted_index.GNN | 108, 121 |
| abstract_inverted_index.ITk | 130 |
| abstract_inverted_index.Our | 107 |
| abstract_inverted_index.and | 35, 73, 98, 151, 171 |
| abstract_inverted_index.any | 168 |
| abstract_inverted_index.can | 51, 164 |
| abstract_inverted_index.for | 4, 69, 76, 167 |
| abstract_inverted_index.new | 26, 46 |
| abstract_inverted_index.our | 136, 143 |
| abstract_inverted_index.the | 5, 12, 18, 40, 54, 113, 126, 133, 146, 156, 174 |
| abstract_inverted_index.two | 65 |
| abstract_inverted_index.High | 19 |
| abstract_inverted_index.LHC, | 21 |
| abstract_inverted_index.This | 117 |
| abstract_inverted_index.With | 154 |
| abstract_inverted_index.cope | 10 |
| abstract_inverted_index.data | 152 |
| abstract_inverted_index.good | 100 |
| abstract_inverted_index.only | 111 |
| abstract_inverted_index.same | 41 |
| abstract_inverted_index.that | 50, 163 |
| abstract_inverted_index.used | 166 |
| abstract_inverted_index.with | 11, 173 |
| abstract_inverted_index.work | 118 |
| abstract_inverted_index.ATLAS | 6, 22, 43, 148 |
| abstract_inverted_index.Graph | 94 |
| abstract_inverted_index.Inner | 28 |
| abstract_inverted_index.Pixel | 34 |
| abstract_inverted_index.Strip | 37 |
| abstract_inverted_index.based | 91 |
| abstract_inverted_index.data, | 131 |
| abstract_inverted_index.dense | 56 |
| abstract_inverted_index.fully | 124 |
| abstract_inverted_index.needs | 62 |
| abstract_inverted_index.other | 175 |
| abstract_inverted_index.solve | 64 |
| abstract_inverted_index.that, | 155 |
| abstract_inverted_index.those | 81 |
| abstract_inverted_index.time, | 42 |
| abstract_inverted_index.track | 47, 59, 67, 71, 74, 78, 82, 161, 176 |
| abstract_inverted_index.under | 103 |
| abstract_inverted_index.vital | 3 |
| abstract_inverted_index.(GNN), | 97 |
| abstract_inverted_index.(ITk), | 30 |
| abstract_inverted_index.HL-LHC | 55, 105 |
| abstract_inverted_index.Neural | 95 |
| abstract_inverted_index.model. | 153 |
| abstract_inverted_index.models | 122 |
| abstract_inverted_index.number | 14 |
| abstract_inverted_index.relied | 110 |
| abstract_inverted_index.GNN4ITk | 137, 157 |
| abstract_inverted_index.Network | 96 |
| abstract_inverted_index.Tracker | 29 |
| abstract_inverted_index.exploit | 125 |
| abstract_inverted_index.finding | 68 |
| abstract_inverted_index.fitting | 75 |
| abstract_inverted_index.operate | 52 |
| abstract_inverted_index.physics | 7 |
| abstract_inverted_index.GNN4ITk, | 87 |
| abstract_inverted_index.Particle | 0 |
| abstract_inverted_index.achieved | 99 |
| abstract_inverted_index.analyses | 170 |
| abstract_inverted_index.building | 24, 70 |
| abstract_inverted_index.compared | 172 |
| abstract_inverted_index.features | 128 |
| abstract_inverted_index.pipeline | 109, 144, 158 |
| abstract_inverted_index.produces | 159 |
| abstract_inverted_index.standard | 147 |
| abstract_inverted_index.tracking | 1 |
| abstract_inverted_index.addition, | 140 |
| abstract_inverted_index.algorithm | 61, 90, 150 |
| abstract_inverted_index.developed | 86 |
| abstract_inverted_index.improving | 132 |
| abstract_inverted_index.increased | 13 |
| abstract_inverted_index.obtaining | 77 |
| abstract_inverted_index.particles | 16 |
| abstract_inverted_index.pipeline. | 138 |
| abstract_inverted_index.problems: | 66 |
| abstract_inverted_index.programs. | 8 |
| abstract_inverted_index.realistic | 104 |
| abstract_inverted_index.Luminosity | 20 |
| abstract_inverted_index.algorithms | 49 |
| abstract_inverted_index.candidates | 72, 162 |
| abstract_inverted_index.consisting | 31 |
| abstract_inverted_index.developing | 45 |
| abstract_inverted_index.downstream | 169 |
| abstract_inverted_index.interfaced | 142 |
| abstract_inverted_index.introduces | 119 |
| abstract_inverted_index.parameters | 79 |
| abstract_inverted_index.positions. | 116 |
| abstract_inverted_index.spacepoint | 115 |
| abstract_inverted_index.Previously, | 84 |
| abstract_inverted_index.algorithms. | 178 |
| abstract_inverted_index.all-silicon | 27 |
| abstract_inverted_index.candidates. | 83 |
| abstract_inverted_index.conditions. | 106 |
| abstract_inverted_index.performance | 102, 134 |
| abstract_inverted_index.environment. | 57 |
| abstract_inverted_index.full-fledged | 160 |
| abstract_inverted_index.subdetector. | 38 |
| abstract_inverted_index.heterogeneous | 120 |
| abstract_inverted_index.track-finding | 89, 101 |
| abstract_inverted_index.track-fitting | 149 |
| abstract_inverted_index.reconstruction | 48, 60, 177 |
| abstract_inverted_index.subdetector-dependent | 127 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.93260666 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |