Physiotherapy Exercise Classification with Single-Camera Pose Detection and Machine Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/s23010363
Access to healthcare, including physiotherapy, is increasingly occurring through virtual formats. At-home adherence to physical therapy programs is often poor and few tools exist to objectively measure participation. The aim of this study was to develop and evaluate the potential for performing automatic, unsupervised video-based monitoring of at-home low-back and shoulder physiotherapy exercises using a mobile phone camera. Joint locations were extracted from the videos of healthy subjects performing low-back and shoulder physiotherapy exercises using an open source pose detection framework. A convolutional neural network was trained to classify physiotherapy exercises based on the segments of keypoint time series data. The model’s performance as a function of input keypoint combinations was studied in addition to its robustness to variation in the camera angle. The CNN model achieved optimal performance using a total of 12 pose estimation landmarks from the upper and lower body (low-back exercise classification: 0.995 ± 0.009; shoulder exercise classification: 0.963 ± 0.020). Training the CNN on a variety of angles was found to be effective in making the model robust to variations in video filming angle. This study demonstrates the feasibility of using a smartphone camera and a supervised machine learning model to effectively classify at-home physiotherapy participation and could provide a low-cost, scalable method for tracking adherence to physical therapy exercise programs in a variety of settings.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s23010363
- https://www.mdpi.com/1424-8220/23/1/363/pdf?version=1672308063
- OA Status
- gold
- Cited By
- 33
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4313294819
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4313294819Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s23010363Digital Object Identifier
- Title
-
Physiotherapy Exercise Classification with Single-Camera Pose Detection and Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-29Full publication date if available
- Authors
-
Colin Arrowsmith, David Burns, Thomas C. W. Mak, Michael Hardisty, Cari WhyneList of authors in order
- Landing page
-
https://doi.org/10.3390/s23010363Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/23/1/363/pdf?version=1672308063Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/23/1/363/pdf?version=1672308063Direct OA link when available
- Concepts
-
Convolutional neural network, Computer science, Artificial intelligence, Robustness (evolution), Machine learning, Physical medicine and rehabilitation, Medicine, Biochemistry, Chemistry, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
33Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 13, 2024: 15, 2023: 5Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4313294819 |
|---|---|
| doi | https://doi.org/10.3390/s23010363 |
| ids.doi | https://doi.org/10.3390/s23010363 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36616961 |
| ids.openalex | https://openalex.org/W4313294819 |
| fwci | 4.70591433 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D026741 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Physical Therapy Modalities |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D015444 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Exercise |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D005081 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Exercise Therapy |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D016571 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Neural Networks, Computer |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000069550 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Machine Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D026741 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Physical Therapy Modalities |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D015444 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Exercise |
| mesh[9].qualifier_ui | Q000379 |
| mesh[9].descriptor_ui | D005081 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | methods |
| mesh[9].descriptor_name | Exercise Therapy |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D016571 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Neural Networks, Computer |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000069550 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Machine Learning |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D026741 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Physical Therapy Modalities |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D015444 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Exercise |
| mesh[15].qualifier_ui | Q000379 |
| mesh[15].descriptor_ui | D005081 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | methods |
| mesh[15].descriptor_name | Exercise Therapy |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D016571 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Neural Networks, Computer |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000069550 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Machine Learning |
| type | article |
| title | Physiotherapy Exercise Classification with Single-Camera Pose Detection and Machine Learning |
| biblio.issue | 1 |
| biblio.volume | 23 |
| biblio.last_page | 363 |
| biblio.first_page | 363 |
| topics[0].id | https://openalex.org/T10510 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9937999844551086 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2742 |
| topics[0].subfield.display_name | Rehabilitation |
| topics[0].display_name | Stroke Rehabilitation and Recovery |
| topics[1].id | https://openalex.org/T11227 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9921000003814697 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2712 |
| topics[1].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[1].display_name | Diabetic Foot Ulcer Assessment and Management |
| topics[2].id | https://openalex.org/T10114 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9894000291824341 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3612 |
| topics[2].subfield.display_name | Physical Therapy, Sports Therapy and Rehabilitation |
| topics[2].display_name | Balance, Gait, and Falls Prevention |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6702595353126526 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6103314161300659 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6097685694694519 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5778927803039551 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.45350906252861023 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C99508421 |
| concepts[5].level | 1 |
| concepts[5].score | 0.368864506483078 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[5].display_name | Physical medicine and rehabilitation |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.248392254114151 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C55493867 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[7].display_name | Biochemistry |
| concepts[8].id | https://openalex.org/C185592680 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[8].display_name | Chemistry |
| concepts[9].id | https://openalex.org/C104317684 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[9].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.6702595353126526 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6103314161300659 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6097685694694519 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.5778927803039551 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.45350906252861023 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[5].score | 0.368864506483078 |
| keywords[5].display_name | Physical medicine and rehabilitation |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.248392254114151 |
| keywords[6].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.3390/s23010363 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/23/1/363/pdf?version=1672308063 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s23010363 |
| locations[1].id | pmid:36616961 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36616961 |
| locations[2].id | pmh:oai:doaj.org/article:52bea4bccb0647679677a759c6d8b49e |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 23, Iss 1, p 363 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/52bea4bccb0647679677a759c6d8b49e |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/23/1/363/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors; Volume 23; Issue 1; Pages: 363 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/s23010363 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9824820 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9824820 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5026366043 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1938-0210 |
| authorships[0].author.display_name | Colin Arrowsmith |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210167439, https://openalex.org/I4391768120 |
| authorships[0].affiliations[0].raw_affiliation_string | Orthopaedic Biomechanics Lab, Holland Bone and Joint Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada |
| authorships[0].affiliations[1].raw_affiliation_string | Halterix Corporation, Toronto, ON M5E 1L4, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I4391768120 |
| authorships[0].institutions[0].ror | https://ror.org/05n0tzs53 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1323843004, https://openalex.org/I185261750, https://openalex.org/I4391768120 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Sunnybrook Research Institute |
| authorships[0].institutions[1].id | https://openalex.org/I4210167439 |
| authorships[0].institutions[1].ror | https://ror.org/008kn1a71 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I1323843004, https://openalex.org/I4210167439 |
| authorships[0].institutions[1].country_code | CA |
| authorships[0].institutions[1].display_name | Sunnybrook Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Colin Arrowsmith |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Halterix Corporation, Toronto, ON M5E 1L4, Canada, Orthopaedic Biomechanics Lab, Holland Bone and Joint Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada |
| authorships[1].author.id | https://openalex.org/A5074463664 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1617-596X |
| authorships[1].author.display_name | David Burns |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[1].affiliations[0].raw_affiliation_string | Division of Orthopaedic Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada |
| authorships[1].affiliations[1].raw_affiliation_string | Halterix Corporation, Toronto, ON M5E 1L4, Canada |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I4210167439, https://openalex.org/I4391768120 |
| authorships[1].affiliations[2].raw_affiliation_string | Orthopaedic Biomechanics Lab, Holland Bone and Joint Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I4391768120 |
| authorships[1].institutions[0].ror | https://ror.org/05n0tzs53 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1323843004, https://openalex.org/I185261750, https://openalex.org/I4391768120 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Sunnybrook Research Institute |
| authorships[1].institutions[1].id | https://openalex.org/I4210167439 |
| authorships[1].institutions[1].ror | https://ror.org/008kn1a71 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I1323843004, https://openalex.org/I4210167439 |
| authorships[1].institutions[1].country_code | CA |
| authorships[1].institutions[1].display_name | Sunnybrook Hospital |
| authorships[1].institutions[2].id | https://openalex.org/I185261750 |
| authorships[1].institutions[2].ror | https://ror.org/03dbr7087 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I185261750 |
| authorships[1].institutions[2].country_code | CA |
| authorships[1].institutions[2].display_name | University of Toronto |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | David Burns |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Division of Orthopaedic Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada, Halterix Corporation, Toronto, ON M5E 1L4, Canada, Orthopaedic Biomechanics Lab, Holland Bone and Joint Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada |
| authorships[2].author.id | https://openalex.org/A5025981159 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4316-2937 |
| authorships[2].author.display_name | Thomas C. W. Mak |
| authorships[2].affiliations[0].raw_affiliation_string | Halterix Corporation, Toronto, ON M5E 1L4, Canada |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Thomas Mak |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Halterix Corporation, Toronto, ON M5E 1L4, Canada |
| authorships[3].author.id | https://openalex.org/A5051263805 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8941-3543 |
| authorships[3].author.display_name | Michael Hardisty |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[3].affiliations[0].raw_affiliation_string | Division of Orthopaedic Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210167439, https://openalex.org/I4391768120 |
| authorships[3].affiliations[1].raw_affiliation_string | Orthopaedic Biomechanics Lab, Holland Bone and Joint Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I4391768120 |
| authorships[3].institutions[0].ror | https://ror.org/05n0tzs53 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1323843004, https://openalex.org/I185261750, https://openalex.org/I4391768120 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | Sunnybrook Research Institute |
| authorships[3].institutions[1].id | https://openalex.org/I4210167439 |
| authorships[3].institutions[1].ror | https://ror.org/008kn1a71 |
| authorships[3].institutions[1].type | healthcare |
| authorships[3].institutions[1].lineage | https://openalex.org/I1323843004, https://openalex.org/I4210167439 |
| authorships[3].institutions[1].country_code | CA |
| authorships[3].institutions[1].display_name | Sunnybrook Hospital |
| authorships[3].institutions[2].id | https://openalex.org/I185261750 |
| authorships[3].institutions[2].ror | https://ror.org/03dbr7087 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I185261750 |
| authorships[3].institutions[2].country_code | CA |
| authorships[3].institutions[2].display_name | University of Toronto |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Michael Hardisty |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Division of Orthopaedic Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada, Orthopaedic Biomechanics Lab, Holland Bone and Joint Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada |
| authorships[4].author.id | https://openalex.org/A5070333836 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6822-8314 |
| authorships[4].author.display_name | Cari Whyne |
| authorships[4].countries | CA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210167439, https://openalex.org/I4391768120 |
| authorships[4].affiliations[0].raw_affiliation_string | Orthopaedic Biomechanics Lab, Holland Bone and Joint Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I185261750 |
| authorships[4].affiliations[1].raw_affiliation_string | Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I185261750 |
| authorships[4].affiliations[2].raw_affiliation_string | Division of Orthopaedic Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada |
| authorships[4].institutions[0].id | https://openalex.org/I4391768120 |
| authorships[4].institutions[0].ror | https://ror.org/05n0tzs53 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1323843004, https://openalex.org/I185261750, https://openalex.org/I4391768120 |
| authorships[4].institutions[0].country_code | |
| authorships[4].institutions[0].display_name | Sunnybrook Research Institute |
| authorships[4].institutions[1].id | https://openalex.org/I4210167439 |
| authorships[4].institutions[1].ror | https://ror.org/008kn1a71 |
| authorships[4].institutions[1].type | healthcare |
| authorships[4].institutions[1].lineage | https://openalex.org/I1323843004, https://openalex.org/I4210167439 |
| authorships[4].institutions[1].country_code | CA |
| authorships[4].institutions[1].display_name | Sunnybrook Hospital |
| authorships[4].institutions[2].id | https://openalex.org/I185261750 |
| authorships[4].institutions[2].ror | https://ror.org/03dbr7087 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I185261750 |
| authorships[4].institutions[2].country_code | CA |
| authorships[4].institutions[2].display_name | University of Toronto |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Cari Whyne |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Division of Orthopaedic Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada, Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada, Orthopaedic Biomechanics Lab, Holland Bone and Joint Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/23/1/363/pdf?version=1672308063 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Physiotherapy Exercise Classification with Single-Camera Pose Detection and Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10510 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9937999844551086 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2742 |
| primary_topic.subfield.display_name | Rehabilitation |
| primary_topic.display_name | Stroke Rehabilitation and Recovery |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 33 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 13 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 15 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s23010363 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/23/1/363/pdf?version=1672308063 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s23010363 |
| primary_location.id | doi:10.3390/s23010363 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/23/1/363/pdf?version=1672308063 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s23010363 |
| publication_date | 2022-12-29 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1780277077, https://openalex.org/W1995557364, https://openalex.org/W2063095747, https://openalex.org/W2920828889, https://openalex.org/W2014914145, https://openalex.org/W3122353999, https://openalex.org/W2098654980, https://openalex.org/W1969646198, https://openalex.org/W2997780697, https://openalex.org/W6772122088, https://openalex.org/W7014944797, https://openalex.org/W3135586418, https://openalex.org/W1976146815, https://openalex.org/W2997603128, https://openalex.org/W2790465659, https://openalex.org/W2884444783, https://openalex.org/W2529354435, https://openalex.org/W2280807596, https://openalex.org/W2006233203, https://openalex.org/W2068006147, https://openalex.org/W2786289268, https://openalex.org/W3019601259, https://openalex.org/W4283452450, https://openalex.org/W3091816019, https://openalex.org/W4251019210, https://openalex.org/W3163736132, https://openalex.org/W3108914541, https://openalex.org/W2559085405, https://openalex.org/W3048912365, https://openalex.org/W4206556668, https://openalex.org/W4281556630, https://openalex.org/W6749462225, https://openalex.org/W6675354045, https://openalex.org/W2999955388, https://openalex.org/W2551393996, https://openalex.org/W2618530766, https://openalex.org/W1861492603, https://openalex.org/W3154625726, https://openalex.org/W3215092760, https://openalex.org/W3213312178, https://openalex.org/W4285014993, https://openalex.org/W2147953332, https://openalex.org/W4387772280, https://openalex.org/W2101234009, https://openalex.org/W2962970382, https://openalex.org/W3098254263 |
| referenced_works_count | 46 |
| abstract_inverted_index.A | 81 |
| abstract_inverted_index.a | 54, 104, 130, 159, 186, 190, 204, 217 |
| abstract_inverted_index.12 | 133 |
| abstract_inverted_index.an | 75 |
| abstract_inverted_index.as | 103 |
| abstract_inverted_index.be | 166 |
| abstract_inverted_index.in | 112, 119, 168, 175, 216 |
| abstract_inverted_index.is | 5, 17 |
| abstract_inverted_index.of | 30, 46, 65, 95, 106, 132, 161, 184, 219 |
| abstract_inverted_index.on | 92, 158 |
| abstract_inverted_index.to | 1, 13, 24, 34, 87, 114, 117, 165, 173, 195, 211 |
| abstract_inverted_index.± | 147, 153 |
| abstract_inverted_index.CNN | 124, 157 |
| abstract_inverted_index.The | 28, 100, 123 |
| abstract_inverted_index.aim | 29 |
| abstract_inverted_index.and | 20, 36, 49, 70, 140, 189, 201 |
| abstract_inverted_index.few | 21 |
| abstract_inverted_index.for | 40, 208 |
| abstract_inverted_index.its | 115 |
| abstract_inverted_index.the | 38, 63, 93, 120, 138, 156, 170, 182 |
| abstract_inverted_index.was | 33, 85, 110, 163 |
| abstract_inverted_index.This | 179 |
| abstract_inverted_index.body | 142 |
| abstract_inverted_index.from | 62, 137 |
| abstract_inverted_index.open | 76 |
| abstract_inverted_index.poor | 19 |
| abstract_inverted_index.pose | 78, 134 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.time | 97 |
| abstract_inverted_index.were | 60 |
| abstract_inverted_index.0.963 | 152 |
| abstract_inverted_index.0.995 | 146 |
| abstract_inverted_index.Joint | 58 |
| abstract_inverted_index.based | 91 |
| abstract_inverted_index.could | 202 |
| abstract_inverted_index.data. | 99 |
| abstract_inverted_index.exist | 23 |
| abstract_inverted_index.found | 164 |
| abstract_inverted_index.input | 107 |
| abstract_inverted_index.lower | 141 |
| abstract_inverted_index.model | 125, 171, 194 |
| abstract_inverted_index.often | 18 |
| abstract_inverted_index.phone | 56 |
| abstract_inverted_index.study | 32, 180 |
| abstract_inverted_index.tools | 22 |
| abstract_inverted_index.total | 131 |
| abstract_inverted_index.upper | 139 |
| abstract_inverted_index.using | 53, 74, 129, 185 |
| abstract_inverted_index.video | 176 |
| abstract_inverted_index.0.009; | 148 |
| abstract_inverted_index.Access | 0 |
| abstract_inverted_index.angle. | 122, 178 |
| abstract_inverted_index.angles | 162 |
| abstract_inverted_index.camera | 121, 188 |
| abstract_inverted_index.making | 169 |
| abstract_inverted_index.method | 207 |
| abstract_inverted_index.mobile | 55 |
| abstract_inverted_index.neural | 83 |
| abstract_inverted_index.robust | 172 |
| abstract_inverted_index.series | 98 |
| abstract_inverted_index.source | 77 |
| abstract_inverted_index.videos | 64 |
| abstract_inverted_index.0.020). | 154 |
| abstract_inverted_index.At-home | 11 |
| abstract_inverted_index.at-home | 47, 198 |
| abstract_inverted_index.camera. | 57 |
| abstract_inverted_index.develop | 35 |
| abstract_inverted_index.filming | 177 |
| abstract_inverted_index.healthy | 66 |
| abstract_inverted_index.machine | 192 |
| abstract_inverted_index.measure | 26 |
| abstract_inverted_index.network | 84 |
| abstract_inverted_index.optimal | 127 |
| abstract_inverted_index.provide | 203 |
| abstract_inverted_index.studied | 111 |
| abstract_inverted_index.therapy | 15, 213 |
| abstract_inverted_index.through | 8 |
| abstract_inverted_index.trained | 86 |
| abstract_inverted_index.variety | 160, 218 |
| abstract_inverted_index.virtual | 9 |
| abstract_inverted_index.Training | 155 |
| abstract_inverted_index.achieved | 126 |
| abstract_inverted_index.addition | 113 |
| abstract_inverted_index.classify | 88, 197 |
| abstract_inverted_index.evaluate | 37 |
| abstract_inverted_index.exercise | 144, 150, 214 |
| abstract_inverted_index.formats. | 10 |
| abstract_inverted_index.function | 105 |
| abstract_inverted_index.keypoint | 96, 108 |
| abstract_inverted_index.learning | 193 |
| abstract_inverted_index.low-back | 48, 69 |
| abstract_inverted_index.physical | 14, 212 |
| abstract_inverted_index.programs | 16, 215 |
| abstract_inverted_index.scalable | 206 |
| abstract_inverted_index.segments | 94 |
| abstract_inverted_index.shoulder | 50, 71, 149 |
| abstract_inverted_index.subjects | 67 |
| abstract_inverted_index.tracking | 209 |
| abstract_inverted_index.(low-back | 143 |
| abstract_inverted_index.adherence | 12, 210 |
| abstract_inverted_index.detection | 79 |
| abstract_inverted_index.effective | 167 |
| abstract_inverted_index.exercises | 52, 73, 90 |
| abstract_inverted_index.extracted | 61 |
| abstract_inverted_index.including | 3 |
| abstract_inverted_index.landmarks | 136 |
| abstract_inverted_index.locations | 59 |
| abstract_inverted_index.low-cost, | 205 |
| abstract_inverted_index.model’s | 101 |
| abstract_inverted_index.occurring | 7 |
| abstract_inverted_index.potential | 39 |
| abstract_inverted_index.settings. | 220 |
| abstract_inverted_index.variation | 118 |
| abstract_inverted_index.automatic, | 42 |
| abstract_inverted_index.estimation | 135 |
| abstract_inverted_index.framework. | 80 |
| abstract_inverted_index.monitoring | 45 |
| abstract_inverted_index.performing | 41, 68 |
| abstract_inverted_index.robustness | 116 |
| abstract_inverted_index.smartphone | 187 |
| abstract_inverted_index.supervised | 191 |
| abstract_inverted_index.variations | 174 |
| abstract_inverted_index.effectively | 196 |
| abstract_inverted_index.feasibility | 183 |
| abstract_inverted_index.healthcare, | 2 |
| abstract_inverted_index.objectively | 25 |
| abstract_inverted_index.performance | 102, 128 |
| abstract_inverted_index.video-based | 44 |
| abstract_inverted_index.combinations | 109 |
| abstract_inverted_index.demonstrates | 181 |
| abstract_inverted_index.increasingly | 6 |
| abstract_inverted_index.unsupervised | 43 |
| abstract_inverted_index.convolutional | 82 |
| abstract_inverted_index.participation | 200 |
| abstract_inverted_index.physiotherapy | 51, 72, 89, 199 |
| abstract_inverted_index.participation. | 27 |
| abstract_inverted_index.physiotherapy, | 4 |
| abstract_inverted_index.classification: | 145, 151 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5070333836 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I185261750, https://openalex.org/I4210167439, https://openalex.org/I4391768120 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.93243944 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |