PIPE: Physics-Informed Position Encoding for Alignment of Satellite Images and Time Series Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.14786
Multimodal time series forecasting is foundational in various fields, such as utilizing satellite imagery and numerical data for predicting typhoons in climate science. However, existing multimodal approaches primarily focus on utilizing text data to help time series forecasting, leaving the visual data in existing time series datasets untouched. Furthermore, it is challenging for models to effectively capture the physical information embedded in visual data, such as satellite imagery's temporal and geospatial context, which extends beyond images themselves. To address this gap, we propose physics-informed positional encoding (PIPE), a lightweight method that embeds physical information into vision language models (VLMs). PIPE introduces two key innovations: (1) a physics-informed positional indexing scheme for mapping physics to positional IDs, and (2) a variant-frequency positional encoding mechanism for encoding frequency information of physical variables and sequential order of tokens within the embedding space. By preserving both the physical information and sequential order information, PIPE significantly improves multimodal alignment and forecasting accuracy. Through the experiments on the most representative and the largest open-sourced satellite image dataset, PIPE achieves state-of-the-art performance in both deep learning forecasting and climate domain methods, demonstrating superiority across benchmarks, including a 12% improvement in typhoon intensity forecasting over prior works. Our code is provided in the supplementary material.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.14786
- https://arxiv.org/pdf/2506.14786
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415312748
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415312748Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.14786Digital Object Identifier
- Title
-
PIPE: Physics-Informed Position Encoding for Alignment of Satellite Images and Time SeriesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-27Full publication date if available
- Authors
-
Haobo Li, Eunho Jung, Zixin Chen, Zhaowei Wang, Yuneng Wang, Huamin Qu, Alexis K.H. LauList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.14786Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.14786Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.14786Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415312748 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.14786 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.14786 |
| ids.openalex | https://openalex.org/W4415312748 |
| fwci | |
| type | preprint |
| title | PIPE: Physics-Informed Position Encoding for Alignment of Satellite Images and Time Series |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11405 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9208999872207642 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1910 |
| topics[0].subfield.display_name | Oceanography |
| topics[0].display_name | Geophysics and Gravity Measurements |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.14786 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.14786 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.14786 |
| locations[1].id | doi:10.48550/arxiv.2506.14786 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.14786 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100669167 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5441-2818 |
| authorships[0].author.display_name | Haobo Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Haobo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5108773569 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-6652-5189 |
| authorships[1].author.display_name | Eunho Jung |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jung, Eunseo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5032092856 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7441-1353 |
| authorships[2].author.display_name | Zixin Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Zixin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100655132 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7797-3316 |
| authorships[3].author.display_name | Zhaowei Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Zhaowei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5081588068 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yuneng Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Yueya |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5091466289 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3344-9694 |
| authorships[5].author.display_name | Huamin Qu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Qu, Huamin |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5056499019 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3802-828X |
| authorships[6].author.display_name | Alexis K.H. Lau |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Lau, Alexis Kai Hon |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.14786 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-18T00:00:00 |
| display_name | PIPE: Physics-Informed Position Encoding for Alignment of Satellite Images and Time Series |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11405 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9208999872207642 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1910 |
| primary_topic.subfield.display_name | Oceanography |
| primary_topic.display_name | Geophysics and Gravity Measurements |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.14786 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.14786 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.14786 |
| primary_location.id | pmh:oai:arXiv.org:2506.14786 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.14786 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.14786 |
| publication_date | 2025-05-27 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 87, 105, 118, 189 |
| abstract_inverted_index.By | 139 |
| abstract_inverted_index.To | 77 |
| abstract_inverted_index.as | 10, 65 |
| abstract_inverted_index.in | 6, 20, 42, 61, 175, 192, 203 |
| abstract_inverted_index.is | 4, 50, 201 |
| abstract_inverted_index.it | 49 |
| abstract_inverted_index.of | 127, 133 |
| abstract_inverted_index.on | 29, 160 |
| abstract_inverted_index.to | 33, 54, 113 |
| abstract_inverted_index.we | 81 |
| abstract_inverted_index.(1) | 104 |
| abstract_inverted_index.(2) | 117 |
| abstract_inverted_index.12% | 190 |
| abstract_inverted_index.Our | 199 |
| abstract_inverted_index.and | 14, 69, 116, 130, 145, 154, 164, 180 |
| abstract_inverted_index.for | 17, 52, 110, 123 |
| abstract_inverted_index.key | 102 |
| abstract_inverted_index.the | 39, 57, 136, 142, 158, 161, 165, 204 |
| abstract_inverted_index.two | 101 |
| abstract_inverted_index.IDs, | 115 |
| abstract_inverted_index.PIPE | 99, 149, 171 |
| abstract_inverted_index.both | 141, 176 |
| abstract_inverted_index.code | 200 |
| abstract_inverted_index.data | 16, 32, 41 |
| abstract_inverted_index.deep | 177 |
| abstract_inverted_index.gap, | 80 |
| abstract_inverted_index.help | 34 |
| abstract_inverted_index.into | 94 |
| abstract_inverted_index.most | 162 |
| abstract_inverted_index.over | 196 |
| abstract_inverted_index.such | 9, 64 |
| abstract_inverted_index.text | 31 |
| abstract_inverted_index.that | 90 |
| abstract_inverted_index.this | 79 |
| abstract_inverted_index.time | 1, 35, 44 |
| abstract_inverted_index.data, | 63 |
| abstract_inverted_index.focus | 28 |
| abstract_inverted_index.image | 169 |
| abstract_inverted_index.order | 132, 147 |
| abstract_inverted_index.prior | 197 |
| abstract_inverted_index.which | 72 |
| abstract_inverted_index.across | 186 |
| abstract_inverted_index.beyond | 74 |
| abstract_inverted_index.domain | 182 |
| abstract_inverted_index.embeds | 91 |
| abstract_inverted_index.images | 75 |
| abstract_inverted_index.method | 89 |
| abstract_inverted_index.models | 53, 97 |
| abstract_inverted_index.scheme | 109 |
| abstract_inverted_index.series | 2, 36, 45 |
| abstract_inverted_index.space. | 138 |
| abstract_inverted_index.tokens | 134 |
| abstract_inverted_index.vision | 95 |
| abstract_inverted_index.visual | 40, 62 |
| abstract_inverted_index.within | 135 |
| abstract_inverted_index.works. | 198 |
| abstract_inverted_index.(PIPE), | 86 |
| abstract_inverted_index.(VLMs). | 98 |
| abstract_inverted_index.Through | 157 |
| abstract_inverted_index.address | 78 |
| abstract_inverted_index.capture | 56 |
| abstract_inverted_index.climate | 21, 181 |
| abstract_inverted_index.extends | 73 |
| abstract_inverted_index.fields, | 8 |
| abstract_inverted_index.imagery | 13 |
| abstract_inverted_index.largest | 166 |
| abstract_inverted_index.leaving | 38 |
| abstract_inverted_index.mapping | 111 |
| abstract_inverted_index.physics | 112 |
| abstract_inverted_index.propose | 82 |
| abstract_inverted_index.typhoon | 193 |
| abstract_inverted_index.various | 7 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.achieves | 172 |
| abstract_inverted_index.context, | 71 |
| abstract_inverted_index.dataset, | 170 |
| abstract_inverted_index.datasets | 46 |
| abstract_inverted_index.embedded | 60 |
| abstract_inverted_index.encoding | 85, 121, 124 |
| abstract_inverted_index.existing | 24, 43 |
| abstract_inverted_index.improves | 151 |
| abstract_inverted_index.indexing | 108 |
| abstract_inverted_index.language | 96 |
| abstract_inverted_index.learning | 178 |
| abstract_inverted_index.methods, | 183 |
| abstract_inverted_index.physical | 58, 92, 128, 143 |
| abstract_inverted_index.provided | 202 |
| abstract_inverted_index.science. | 22 |
| abstract_inverted_index.temporal | 68 |
| abstract_inverted_index.typhoons | 19 |
| abstract_inverted_index.accuracy. | 156 |
| abstract_inverted_index.alignment | 153 |
| abstract_inverted_index.embedding | 137 |
| abstract_inverted_index.frequency | 125 |
| abstract_inverted_index.imagery's | 67 |
| abstract_inverted_index.including | 188 |
| abstract_inverted_index.intensity | 194 |
| abstract_inverted_index.material. | 206 |
| abstract_inverted_index.mechanism | 122 |
| abstract_inverted_index.numerical | 15 |
| abstract_inverted_index.primarily | 27 |
| abstract_inverted_index.satellite | 12, 66, 168 |
| abstract_inverted_index.utilizing | 11, 30 |
| abstract_inverted_index.variables | 129 |
| abstract_inverted_index.Multimodal | 0 |
| abstract_inverted_index.approaches | 26 |
| abstract_inverted_index.geospatial | 70 |
| abstract_inverted_index.introduces | 100 |
| abstract_inverted_index.multimodal | 25, 152 |
| abstract_inverted_index.positional | 84, 107, 114, 120 |
| abstract_inverted_index.predicting | 18 |
| abstract_inverted_index.preserving | 140 |
| abstract_inverted_index.sequential | 131, 146 |
| abstract_inverted_index.untouched. | 47 |
| abstract_inverted_index.benchmarks, | 187 |
| abstract_inverted_index.challenging | 51 |
| abstract_inverted_index.effectively | 55 |
| abstract_inverted_index.experiments | 159 |
| abstract_inverted_index.forecasting | 3, 155, 179, 195 |
| abstract_inverted_index.improvement | 191 |
| abstract_inverted_index.information | 59, 93, 126, 144 |
| abstract_inverted_index.lightweight | 88 |
| abstract_inverted_index.performance | 174 |
| abstract_inverted_index.superiority | 185 |
| abstract_inverted_index.themselves. | 76 |
| abstract_inverted_index.Furthermore, | 48 |
| abstract_inverted_index.forecasting, | 37 |
| abstract_inverted_index.foundational | 5 |
| abstract_inverted_index.information, | 148 |
| abstract_inverted_index.innovations: | 103 |
| abstract_inverted_index.open-sourced | 167 |
| abstract_inverted_index.demonstrating | 184 |
| abstract_inverted_index.significantly | 150 |
| abstract_inverted_index.supplementary | 205 |
| abstract_inverted_index.representative | 163 |
| abstract_inverted_index.physics-informed | 83, 106 |
| abstract_inverted_index.state-of-the-art | 173 |
| abstract_inverted_index.variant-frequency | 119 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |