Pixel-level classification of pigmented skin cancer lesions using multispectral autofluorescence lifetime dermoscopy imaging Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1364/boe.523831
There is no clinical tool available to primary care physicians or dermatologists that could provide objective identification of suspicious skin cancer lesions. Multispectral autofluorescence lifetime imaging (maFLIM) dermoscopy enables label-free biochemical and metabolic imaging of skin lesions. This study investigated the use of pixel-level maFLIM dermoscopy features for objective discrimination of malignant from visually similar benign pigmented skin lesions. Clinical maFLIM dermoscopy images were acquired from 60 pigmented skin lesions before undergoing a biopsy examination. Random forest and deep neural networks classification models were explored, as they do not require explicit feature selection. Feature pools with either spectral intensity or bi-exponential maFLIM features, and a combined feature pool, were independently evaluated with each classification model. A rigorous cross-validation strategy tailored for small-size datasets was adopted to estimate classification performance. Time-resolved bi-exponential autofluorescence features were found to be critical for accurate detection of malignant pigmented skin lesions. The deep neural network model produced the best lesion-level classification, with sensitivity and specificity of 76.84%±12.49% and 78.29%±5.50%, respectively, while the random forest classifier produced sensitivity and specificity of 74.73%±14.66% and 76.83%±9.58%, respectively. Results from this study indicate that machine-learning driven maFLIM dermoscopy has the potential to assist doctors with identifying patients in real need of biopsy examination, thus facilitating early detection while reducing the rate of unnecessary biopsies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1364/boe.523831
- OA Status
- gold
- Cited By
- 2
- References
- 70
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400228142
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400228142Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1364/boe.523831Digital Object Identifier
- Title
-
Pixel-level classification of pigmented skin cancer lesions using multispectral autofluorescence lifetime dermoscopy imagingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-02Full publication date if available
- Authors
-
Priyanka Vasanthakumari, Renan Arnon Romano, Ramon Gabriel Teixeira Rosa, Ana Gabriela Sálvio, Vladislav V. Yakovlev, Cristina Kurachi, Jason M. Hirshburg, Javier A. JoList of authors in order
- Landing page
-
https://doi.org/10.1364/boe.523831Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1364/boe.523831Direct OA link when available
- Concepts
-
Multispectral image, Autofluorescence, Random forest, Artificial intelligence, Skin cancer, Medicine, Biopsy, Pattern recognition (psychology), Computer science, Pathology, Cancer, Internal medicine, Physics, Fluorescence, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
70Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400228142 |
|---|---|
| doi | https://doi.org/10.1364/boe.523831 |
| ids.doi | https://doi.org/10.1364/boe.523831 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39346997 |
| ids.openalex | https://openalex.org/W4400228142 |
| fwci | 0.73505193 |
| type | article |
| title | Pixel-level classification of pigmented skin cancer lesions using multispectral autofluorescence lifetime dermoscopy imaging |
| awards[0].id | https://openalex.org/G7044227643 |
| awards[0].funder_id | https://openalex.org/F4320332161 |
| awards[0].display_name | |
| awards[0].funder_award_id | R21GM142107 |
| awards[0].funder_display_name | National Institutes of Health |
| awards[1].id | https://openalex.org/G1991421963 |
| awards[1].funder_id | https://openalex.org/F4320332161 |
| awards[1].display_name | |
| awards[1].funder_award_id | 5P20GM135009 |
| awards[1].funder_display_name | National Institutes of Health |
| awards[2].id | https://openalex.org/G7987147882 |
| awards[2].funder_id | https://openalex.org/F4320320997 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2014/50857-8 (INCT) |
| awards[2].funder_display_name | Fundação de Amparo à Pesquisa do Estado de São Paulo |
| awards[3].id | https://openalex.org/G2016456167 |
| awards[3].funder_id | https://openalex.org/F4320332161 |
| awards[3].display_name | |
| awards[3].funder_award_id | R01GM127696 |
| awards[3].funder_display_name | National Institutes of Health |
| awards[4].id | https://openalex.org/G2724142647 |
| awards[4].funder_id | https://openalex.org/F4320332161 |
| awards[4].display_name | |
| awards[4].funder_award_id | 1R21CA269099 |
| awards[4].funder_display_name | National Institutes of Health |
| awards[5].id | https://openalex.org/G2701110408 |
| awards[5].funder_id | https://openalex.org/F4320320997 |
| awards[5].display_name | |
| awards[5].funder_award_id | 2013/07276-1 (CEPOF) |
| awards[5].funder_display_name | Fundação de Amparo à Pesquisa do Estado de São Paulo |
| awards[6].id | https://openalex.org/G105133904 |
| awards[6].funder_id | https://openalex.org/F4320321091 |
| awards[6].display_name | |
| awards[6].funder_award_id | CNPq-PQ (305795/2016-3) |
| awards[6].funder_display_name | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior |
| awards[7].id | https://openalex.org/G726716347 |
| awards[7].funder_id | https://openalex.org/F4320321091 |
| awards[7].display_name | |
| awards[7].funder_award_id | CNPq-PVE (401150/2014-3 and 314533/2014-1) |
| awards[7].funder_display_name | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior |
| awards[8].id | https://openalex.org/G4566580867 |
| awards[8].funder_id | https://openalex.org/F4320332161 |
| awards[8].display_name | |
| awards[8].funder_award_id | R01GM152633 |
| awards[8].funder_display_name | National Institutes of Health |
| awards[9].id | https://openalex.org/G1962910360 |
| awards[9].funder_id | https://openalex.org/F4320332161 |
| awards[9].display_name | |
| awards[9].funder_award_id | 1R01CA218739 |
| awards[9].funder_display_name | National Institutes of Health |
| awards[10].id | https://openalex.org/G2049921093 |
| awards[10].funder_id | https://openalex.org/F4320308129 |
| awards[10].display_name | |
| awards[10].funder_award_id | RP180588 |
| awards[10].funder_display_name | Cancer Prevention and Research Institute of Texas |
| biblio.issue | 8 |
| biblio.volume | 15 |
| biblio.last_page | 4557 |
| biblio.first_page | 4557 |
| topics[0].id | https://openalex.org/T11569 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Optical Coherence Tomography Applications |
| topics[1].id | https://openalex.org/T10392 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2730 |
| topics[1].subfield.display_name | Oncology |
| topics[1].display_name | Cutaneous Melanoma Detection and Management |
| topics[2].id | https://openalex.org/T11013 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9940000176429749 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2708 |
| topics[2].subfield.display_name | Dermatology |
| topics[2].display_name | Skin Protection and Aging |
| funders[0].id | https://openalex.org/F4320308129 |
| funders[0].ror | https://ror.org/0003xa228 |
| funders[0].display_name | Cancer Prevention and Research Institute of Texas |
| funders[1].id | https://openalex.org/F4320320997 |
| funders[1].ror | https://ror.org/02ddkpn78 |
| funders[1].display_name | Fundação de Amparo à Pesquisa do Estado de São Paulo |
| funders[2].id | https://openalex.org/F4320321091 |
| funders[2].ror | https://ror.org/00x0ma614 |
| funders[2].display_name | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior |
| funders[3].id | https://openalex.org/F4320332161 |
| funders[3].ror | https://ror.org/01cwqze88 |
| funders[3].display_name | National Institutes of Health |
| is_xpac | False |
| apc_list.value | 1913 |
| apc_list.currency | USD |
| apc_list.value_usd | 1913 |
| apc_paid.value | 1913 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1913 |
| concepts[0].id | https://openalex.org/C173163844 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8557319045066833 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1761440 |
| concepts[0].display_name | Multispectral image |
| concepts[1].id | https://openalex.org/C179687394 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8373492956161499 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4826281 |
| concepts[1].display_name | Autofluorescence |
| concepts[2].id | https://openalex.org/C169258074 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6087873578071594 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[2].display_name | Random forest |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5074233412742615 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2777789703 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5004494190216064 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192102 |
| concepts[4].display_name | Skin cancer |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4962027668952942 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C2775934546 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46305012702941895 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q179991 |
| concepts[6].display_name | Biopsy |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.37523263692855835 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.31566286087036133 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C142724271 |
| concepts[9].level | 1 |
| concepts[9].score | 0.31083840131759644 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[9].display_name | Pathology |
| concepts[10].id | https://openalex.org/C121608353 |
| concepts[10].level | 2 |
| concepts[10].score | 0.2694408595561981 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[10].display_name | Cancer |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C91881484 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q191807 |
| concepts[13].display_name | Fluorescence |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/multispectral-image |
| keywords[0].score | 0.8557319045066833 |
| keywords[0].display_name | Multispectral image |
| keywords[1].id | https://openalex.org/keywords/autofluorescence |
| keywords[1].score | 0.8373492956161499 |
| keywords[1].display_name | Autofluorescence |
| keywords[2].id | https://openalex.org/keywords/random-forest |
| keywords[2].score | 0.6087873578071594 |
| keywords[2].display_name | Random forest |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5074233412742615 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/skin-cancer |
| keywords[4].score | 0.5004494190216064 |
| keywords[4].display_name | Skin cancer |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.4962027668952942 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/biopsy |
| keywords[6].score | 0.46305012702941895 |
| keywords[6].display_name | Biopsy |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.37523263692855835 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.31566286087036133 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/pathology |
| keywords[9].score | 0.31083840131759644 |
| keywords[9].display_name | Pathology |
| keywords[10].id | https://openalex.org/keywords/cancer |
| keywords[10].score | 0.2694408595561981 |
| keywords[10].display_name | Cancer |
| language | en |
| locations[0].id | doi:10.1364/boe.523831 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S104118869 |
| locations[0].source.issn | 2156-7085 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2156-7085 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Biomedical Optics Express |
| locations[0].source.host_organization | https://openalex.org/P4310315679 |
| locations[0].source.host_organization_name | Optica Publishing Group |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315679 |
| locations[0].source.host_organization_lineage_names | Optica Publishing Group |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Biomedical Optics Express |
| locations[0].landing_page_url | https://doi.org/10.1364/boe.523831 |
| locations[1].id | pmid:39346997 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Biomedical optics express |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39346997 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11427192 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Biomed Opt Express |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11427192 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5029563560 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0822-5936 |
| authorships[0].author.display_name | Priyanka Vasanthakumari |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210142440 |
| authorships[0].affiliations[0].raw_affiliation_string | College Station |
| authorships[0].institutions[0].id | https://openalex.org/I4210142440 |
| authorships[0].institutions[0].ror | https://ror.org/04663jx74 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210142440 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | College Station Medical Center |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Priyanka Vasanthakumari |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College Station |
| authorships[1].author.id | https://openalex.org/A5066272158 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4408-8393 |
| authorships[1].author.display_name | Renan Arnon Romano |
| authorships[1].countries | BR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I17974374 |
| authorships[1].affiliations[0].raw_affiliation_string | University of São Paulo, São Carlos Institute of Physics |
| authorships[1].institutions[0].id | https://openalex.org/I17974374 |
| authorships[1].institutions[0].ror | https://ror.org/036rp1748 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I17974374 |
| authorships[1].institutions[0].country_code | BR |
| authorships[1].institutions[0].display_name | Universidade de São Paulo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Renan A. Romano |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of São Paulo, São Carlos Institute of Physics |
| authorships[2].author.id | https://openalex.org/A5028444622 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Ramon Gabriel Teixeira Rosa |
| authorships[2].countries | BR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I17974374 |
| authorships[2].affiliations[0].raw_affiliation_string | University of São Paulo, São Carlos Institute of Physics |
| authorships[2].institutions[0].id | https://openalex.org/I17974374 |
| authorships[2].institutions[0].ror | https://ror.org/036rp1748 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I17974374 |
| authorships[2].institutions[0].country_code | BR |
| authorships[2].institutions[0].display_name | Universidade de São Paulo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ramon G. T. Rosa |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of São Paulo, São Carlos Institute of Physics |
| authorships[3].author.id | https://openalex.org/A5080989188 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1676-952X |
| authorships[3].author.display_name | Ana Gabriela Sálvio |
| authorships[3].countries | BR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210112644 |
| authorships[3].affiliations[0].raw_affiliation_string | Skin Department of Amaral Carvalho Hospital |
| authorships[3].institutions[0].id | https://openalex.org/I4210112644 |
| authorships[3].institutions[0].ror | https://ror.org/02dngnr16 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210112644 |
| authorships[3].institutions[0].country_code | BR |
| authorships[3].institutions[0].display_name | Hospital Amaral Carvalho |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ana G. Salvio |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Skin Department of Amaral Carvalho Hospital |
| authorships[4].author.id | https://openalex.org/A5006531736 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4557-1013 |
| authorships[4].author.display_name | Vladislav V. Yakovlev |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210142440 |
| authorships[4].affiliations[0].raw_affiliation_string | College Station |
| authorships[4].institutions[0].id | https://openalex.org/I4210142440 |
| authorships[4].institutions[0].ror | https://ror.org/04663jx74 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210142440 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | College Station Medical Center |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Vladislav Yakovlev |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College Station |
| authorships[5].author.id | https://openalex.org/A5056968740 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7175-5337 |
| authorships[5].author.display_name | Cristina Kurachi |
| authorships[5].countries | BR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I17974374 |
| authorships[5].affiliations[0].raw_affiliation_string | University of São Paulo, São Carlos Institute of Physics |
| authorships[5].institutions[0].id | https://openalex.org/I17974374 |
| authorships[5].institutions[0].ror | https://ror.org/036rp1748 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I17974374 |
| authorships[5].institutions[0].country_code | BR |
| authorships[5].institutions[0].display_name | Universidade de São Paulo |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Cristina Kurachi |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of São Paulo, São Carlos Institute of Physics |
| authorships[6].author.id | https://openalex.org/A5033622450 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Jason M. Hirshburg |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I49332381 |
| authorships[6].affiliations[0].raw_affiliation_string | University of Oklahoma Health Science Center |
| authorships[6].institutions[0].id | https://openalex.org/I49332381 |
| authorships[6].institutions[0].ror | https://ror.org/0457zbj98 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I49332381 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Oklahoma Health Sciences Center |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jason M. Hirshburg |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | University of Oklahoma Health Science Center |
| authorships[7].author.id | https://openalex.org/A5081309316 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6368-2246 |
| authorships[7].author.display_name | Javier A. Jo |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Javier A. Jo |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1364/boe.523831 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Pixel-level classification of pigmented skin cancer lesions using multispectral autofluorescence lifetime dermoscopy imaging |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11569 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Optical Coherence Tomography Applications |
| related_works | https://openalex.org/W4399587580, https://openalex.org/W2133629932, https://openalex.org/W2027376101, https://openalex.org/W2016081239, https://openalex.org/W2369270460, https://openalex.org/W2098293184, https://openalex.org/W2069784239, https://openalex.org/W2400218427, https://openalex.org/W4320929906, https://openalex.org/W2174254790 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1364/boe.523831 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S104118869 |
| best_oa_location.source.issn | 2156-7085 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2156-7085 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Biomedical Optics Express |
| best_oa_location.source.host_organization | https://openalex.org/P4310315679 |
| best_oa_location.source.host_organization_name | Optica Publishing Group |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315679 |
| best_oa_location.source.host_organization_lineage_names | Optica Publishing Group |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Biomedical Optics Express |
| best_oa_location.landing_page_url | https://doi.org/10.1364/boe.523831 |
| primary_location.id | doi:10.1364/boe.523831 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S104118869 |
| primary_location.source.issn | 2156-7085 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2156-7085 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Biomedical Optics Express |
| primary_location.source.host_organization | https://openalex.org/P4310315679 |
| primary_location.source.host_organization_name | Optica Publishing Group |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315679 |
| primary_location.source.host_organization_lineage_names | Optica Publishing Group |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Biomedical Optics Express |
| primary_location.landing_page_url | https://doi.org/10.1364/boe.523831 |
| publication_date | 2024-07-02 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4213104093, https://openalex.org/W3153120921, https://openalex.org/W4315754639, https://openalex.org/W1582319233, https://openalex.org/W2164273268, https://openalex.org/W2068879084, https://openalex.org/W2033694649, https://openalex.org/W3159035289, https://openalex.org/W2970027109, https://openalex.org/W4242552027, https://openalex.org/W2121262070, https://openalex.org/W2097094086, https://openalex.org/W2255349000, https://openalex.org/W2133400382, https://openalex.org/W3005950910, https://openalex.org/W3155147933, https://openalex.org/W2975233560, https://openalex.org/W2020222156, https://openalex.org/W2043358335, https://openalex.org/W3120891898, https://openalex.org/W2162396055, https://openalex.org/W2093749790, https://openalex.org/W2744931943, https://openalex.org/W2995403759, https://openalex.org/W2921074798, https://openalex.org/W3011878276, https://openalex.org/W2626497454, https://openalex.org/W1995281127, https://openalex.org/W3138334595, https://openalex.org/W3092034332, https://openalex.org/W3212095056, https://openalex.org/W3030464300, https://openalex.org/W2941551699, https://openalex.org/W4297150890, https://openalex.org/W4318820267, https://openalex.org/W3010447146, https://openalex.org/W2020980454, https://openalex.org/W2777598998, https://openalex.org/W2032738179, https://openalex.org/W2121388227, https://openalex.org/W2129827453, https://openalex.org/W2097259163, https://openalex.org/W2955387657, https://openalex.org/W2056867479, https://openalex.org/W3093657812, https://openalex.org/W2018056590, https://openalex.org/W2303820586, https://openalex.org/W2062482044, https://openalex.org/W2566285254, https://openalex.org/W2005720644, https://openalex.org/W3192610404, https://openalex.org/W3165685657, https://openalex.org/W2579362932, https://openalex.org/W2757182409, https://openalex.org/W2990042794, https://openalex.org/W3118471509, https://openalex.org/W4282831908, https://openalex.org/W2936503027, https://openalex.org/W2095649738, https://openalex.org/W2964121744, https://openalex.org/W3084798277, https://openalex.org/W4214874161, https://openalex.org/W6773984984, https://openalex.org/W3014657527, https://openalex.org/W3044119798, https://openalex.org/W4376456452, https://openalex.org/W3008569881, https://openalex.org/W2080980275, https://openalex.org/W4244545644, https://openalex.org/W4225822790 |
| referenced_works_count | 70 |
| abstract_inverted_index.A | 115 |
| abstract_inverted_index.a | 72, 104 |
| abstract_inverted_index.60 | 66 |
| abstract_inverted_index.as | 85 |
| abstract_inverted_index.be | 136 |
| abstract_inverted_index.do | 87 |
| abstract_inverted_index.in | 198 |
| abstract_inverted_index.is | 1 |
| abstract_inverted_index.no | 2 |
| abstract_inverted_index.of | 17, 34, 42, 50, 141, 160, 174, 201, 212 |
| abstract_inverted_index.or | 10, 99 |
| abstract_inverted_index.to | 6, 125, 135, 192 |
| abstract_inverted_index.The | 146 |
| abstract_inverted_index.and | 31, 77, 103, 158, 162, 172, 176 |
| abstract_inverted_index.for | 47, 120, 138 |
| abstract_inverted_index.has | 189 |
| abstract_inverted_index.not | 88 |
| abstract_inverted_index.the | 40, 152, 166, 190, 210 |
| abstract_inverted_index.use | 41 |
| abstract_inverted_index.was | 123 |
| abstract_inverted_index.This | 37 |
| abstract_inverted_index.best | 153 |
| abstract_inverted_index.care | 8 |
| abstract_inverted_index.deep | 78, 147 |
| abstract_inverted_index.each | 112 |
| abstract_inverted_index.from | 52, 65, 180 |
| abstract_inverted_index.need | 200 |
| abstract_inverted_index.rate | 211 |
| abstract_inverted_index.real | 199 |
| abstract_inverted_index.skin | 19, 35, 57, 68, 144 |
| abstract_inverted_index.that | 12, 184 |
| abstract_inverted_index.they | 86 |
| abstract_inverted_index.this | 181 |
| abstract_inverted_index.thus | 204 |
| abstract_inverted_index.tool | 4 |
| abstract_inverted_index.were | 63, 83, 108, 133 |
| abstract_inverted_index.with | 95, 111, 156, 195 |
| abstract_inverted_index.There | 0 |
| abstract_inverted_index.could | 13 |
| abstract_inverted_index.early | 206 |
| abstract_inverted_index.found | 134 |
| abstract_inverted_index.model | 150 |
| abstract_inverted_index.pool, | 107 |
| abstract_inverted_index.pools | 94 |
| abstract_inverted_index.study | 38, 182 |
| abstract_inverted_index.while | 165, 208 |
| abstract_inverted_index.Random | 75 |
| abstract_inverted_index.assist | 193 |
| abstract_inverted_index.before | 70 |
| abstract_inverted_index.benign | 55 |
| abstract_inverted_index.biopsy | 73, 202 |
| abstract_inverted_index.cancer | 20 |
| abstract_inverted_index.driven | 186 |
| abstract_inverted_index.either | 96 |
| abstract_inverted_index.forest | 76, 168 |
| abstract_inverted_index.images | 62 |
| abstract_inverted_index.maFLIM | 44, 60, 101, 187 |
| abstract_inverted_index.model. | 114 |
| abstract_inverted_index.models | 82 |
| abstract_inverted_index.neural | 79, 148 |
| abstract_inverted_index.random | 167 |
| abstract_inverted_index.Feature | 93 |
| abstract_inverted_index.Results | 179 |
| abstract_inverted_index.adopted | 124 |
| abstract_inverted_index.doctors | 194 |
| abstract_inverted_index.enables | 28 |
| abstract_inverted_index.feature | 91, 106 |
| abstract_inverted_index.imaging | 25, 33 |
| abstract_inverted_index.lesions | 69 |
| abstract_inverted_index.network | 149 |
| abstract_inverted_index.primary | 7 |
| abstract_inverted_index.provide | 14 |
| abstract_inverted_index.require | 89 |
| abstract_inverted_index.similar | 54 |
| abstract_inverted_index.(maFLIM) | 26 |
| abstract_inverted_index.Clinical | 59 |
| abstract_inverted_index.accurate | 139 |
| abstract_inverted_index.acquired | 64 |
| abstract_inverted_index.clinical | 3 |
| abstract_inverted_index.combined | 105 |
| abstract_inverted_index.critical | 137 |
| abstract_inverted_index.datasets | 122 |
| abstract_inverted_index.estimate | 126 |
| abstract_inverted_index.explicit | 90 |
| abstract_inverted_index.features | 46, 132 |
| abstract_inverted_index.indicate | 183 |
| abstract_inverted_index.lesions. | 21, 36, 58, 145 |
| abstract_inverted_index.lifetime | 24 |
| abstract_inverted_index.networks | 80 |
| abstract_inverted_index.patients | 197 |
| abstract_inverted_index.produced | 151, 170 |
| abstract_inverted_index.reducing | 209 |
| abstract_inverted_index.rigorous | 116 |
| abstract_inverted_index.spectral | 97 |
| abstract_inverted_index.strategy | 118 |
| abstract_inverted_index.tailored | 119 |
| abstract_inverted_index.visually | 53 |
| abstract_inverted_index.available | 5 |
| abstract_inverted_index.biopsies. | 214 |
| abstract_inverted_index.detection | 140, 207 |
| abstract_inverted_index.evaluated | 110 |
| abstract_inverted_index.explored, | 84 |
| abstract_inverted_index.features, | 102 |
| abstract_inverted_index.intensity | 98 |
| abstract_inverted_index.malignant | 51, 142 |
| abstract_inverted_index.metabolic | 32 |
| abstract_inverted_index.objective | 15, 48 |
| abstract_inverted_index.pigmented | 56, 67, 143 |
| abstract_inverted_index.potential | 191 |
| abstract_inverted_index.classifier | 169 |
| abstract_inverted_index.dermoscopy | 27, 45, 61, 188 |
| abstract_inverted_index.label-free | 29 |
| abstract_inverted_index.physicians | 9 |
| abstract_inverted_index.selection. | 92 |
| abstract_inverted_index.small-size | 121 |
| abstract_inverted_index.suspicious | 18 |
| abstract_inverted_index.undergoing | 71 |
| abstract_inverted_index.biochemical | 30 |
| abstract_inverted_index.identifying | 196 |
| abstract_inverted_index.pixel-level | 43 |
| abstract_inverted_index.sensitivity | 157, 171 |
| abstract_inverted_index.specificity | 159, 173 |
| abstract_inverted_index.unnecessary | 213 |
| abstract_inverted_index.examination, | 203 |
| abstract_inverted_index.examination. | 74 |
| abstract_inverted_index.facilitating | 205 |
| abstract_inverted_index.investigated | 39 |
| abstract_inverted_index.lesion-level | 154 |
| abstract_inverted_index.performance. | 128 |
| abstract_inverted_index.Multispectral | 22 |
| abstract_inverted_index.Time-resolved | 129 |
| abstract_inverted_index.independently | 109 |
| abstract_inverted_index.respectively, | 164 |
| abstract_inverted_index.respectively. | 178 |
| abstract_inverted_index.74.73%±14.66% | 175 |
| abstract_inverted_index.76.83%±9.58%, | 177 |
| abstract_inverted_index.76.84%±12.49% | 161 |
| abstract_inverted_index.78.29%±5.50%, | 163 |
| abstract_inverted_index.bi-exponential | 100, 130 |
| abstract_inverted_index.classification | 81, 113, 127 |
| abstract_inverted_index.dermatologists | 11 |
| abstract_inverted_index.discrimination | 49 |
| abstract_inverted_index.identification | 16 |
| abstract_inverted_index.classification, | 155 |
| abstract_inverted_index.autofluorescence | 23, 131 |
| abstract_inverted_index.cross-validation | 117 |
| abstract_inverted_index.machine-learning | 185 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.61135583 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |