PLDNet: real-time Plectropomus leopardus disease recognition Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/fmars.2025.1507104
In Plectropomus leopardus , Vibrio disease and Hirudo parasitic disease are relatively common. Timely recognition of these diseases can improve the survival rate of Plectropomus leopardus and prevent their spread. However, early-stage diseases are difficult to distinguish due to their small size and subtle characteristics. Traditional manual recognition methods rely on personal experience and subjective judgment, leading to time-consuming and error-prone diagnoses. To address the challenges in detecting and classifying Plectropomus leopardus diseases, this paper proposes PLDNet (Plectropomus Leopardus Disease Detection Network), a real-time detection and recognition method that provides faster and more accurate diagnoses for fish farms. PLDNet incorporates two significant advancements: First, it employs FocalModulation, which enhances the model’s ability to identify key disease characteristics in images. Second, it introduces the MPDIoU (Minimum Point Distance-based Intersection over Union) for bounding box similarity comparison, optimizing the loss function and improving recognition accuracy. This paper also presents the PLDD (Plectropomus Leopardus Disease Dataset), a newly developed dataset that includes comprehensive images of healthy and diseased specimens. PLDD addresses the scarcity of data for this species and serves as a valuable resource for advancing research in marine fish health. Empirical validation of PLDNet was conducted using the PLDD dataset and benchmarked against leading models, including YOLOv8-n, YOLOv9-m, and YOLOv9-c. The results show that PLDNet achieves superior detection performance, with an average detection accuracy of 84.5%, a recall rate of 86.6%, an [email protected] of 88.1%, and a real-time inference speed of 45 FPS. These metrics demonstrate that PLDNet significantly outperforms other models in both accuracy and efficiency, providing practical solutions for real-time fish disease management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fmars.2025.1507104
- OA Status
- gold
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407613449
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407613449Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fmars.2025.1507104Digital Object Identifier
- Title
-
PLDNet: real-time Plectropomus leopardus disease recognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-17Full publication date if available
- Authors
-
Mengran Liu, Runchen Xue, Cun Wei, Jingjie Hu, Zhenmin Bao, Gang Xu, Junwei ZhouList of authors in order
- Landing page
-
https://doi.org/10.3389/fmars.2025.1507104Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3389/fmars.2025.1507104Direct OA link when available
- Concepts
-
Leopardus, Business, Fishery, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407613449 |
|---|---|
| doi | https://doi.org/10.3389/fmars.2025.1507104 |
| ids.doi | https://doi.org/10.3389/fmars.2025.1507104 |
| ids.openalex | https://openalex.org/W4407613449 |
| fwci | 0.0 |
| type | article |
| title | PLDNet: real-time Plectropomus leopardus disease recognition |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9886999726295471 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T11667 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.984000027179718 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced Chemical Sensor Technologies |
| topics[2].id | https://openalex.org/T10640 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9639000296592712 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1602 |
| topics[2].subfield.display_name | Analytical Chemistry |
| topics[2].display_name | Spectroscopy and Chemometric Analyses |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C2779347578 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9309616088867188 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q318414 |
| concepts[0].display_name | Leopardus |
| concepts[1].id | https://openalex.org/C144133560 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3785548806190491 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[1].display_name | Business |
| concepts[2].id | https://openalex.org/C505870484 |
| concepts[2].level | 1 |
| concepts[2].score | 0.35462838411331177 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q180538 |
| concepts[2].display_name | Fishery |
| concepts[3].id | https://openalex.org/C86803240 |
| concepts[3].level | 0 |
| concepts[3].score | 0.31526803970336914 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[3].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/leopardus |
| keywords[0].score | 0.9309616088867188 |
| keywords[0].display_name | Leopardus |
| keywords[1].id | https://openalex.org/keywords/business |
| keywords[1].score | 0.3785548806190491 |
| keywords[1].display_name | Business |
| keywords[2].id | https://openalex.org/keywords/fishery |
| keywords[2].score | 0.35462838411331177 |
| keywords[2].display_name | Fishery |
| keywords[3].id | https://openalex.org/keywords/biology |
| keywords[3].score | 0.31526803970336914 |
| keywords[3].display_name | Biology |
| language | en |
| locations[0].id | doi:10.3389/fmars.2025.1507104 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2596539584 |
| locations[0].source.issn | 2296-7745 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2296-7745 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Marine Science |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Marine Science |
| locations[0].landing_page_url | https://doi.org/10.3389/fmars.2025.1507104 |
| locations[1].id | pmh:oai:doaj.org/article:0907e52d5de94179ab87862fe328d446 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Frontiers in Marine Science, Vol 12 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/0907e52d5de94179ab87862fe328d446 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5036481700 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6219-2891 |
| authorships[0].author.display_name | Mengran Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mengran Liu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5116287310 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Runchen Xue |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Runchen Xue |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114508849 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Cun Wei |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cun Wei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100646426 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0715-7137 |
| authorships[3].author.display_name | Jingjie Hu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jingjie Hu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100682469 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6126-0509 |
| authorships[4].author.display_name | Zhenmin Bao |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhenmin Bao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5051326682 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6746-8597 |
| authorships[5].author.display_name | Gang Xu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Guojun Xu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5056068917 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6094-1203 |
| authorships[6].author.display_name | Junwei Zhou |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Junwei Zhou |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3389/fmars.2025.1507104 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | PLDNet: real-time Plectropomus leopardus disease recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9886999726295471 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2583243727, https://openalex.org/W2082860237, https://openalex.org/W2119695867, https://openalex.org/W2090215239, https://openalex.org/W2130076355, https://openalex.org/W1990804418, https://openalex.org/W1993764875, https://openalex.org/W2136188780, https://openalex.org/W2046158694 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3389/fmars.2025.1507104 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2596539584 |
| best_oa_location.source.issn | 2296-7745 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2296-7745 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Marine Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Marine Science |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fmars.2025.1507104 |
| primary_location.id | doi:10.3389/fmars.2025.1507104 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2596539584 |
| primary_location.source.issn | 2296-7745 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2296-7745 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Marine Science |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Marine Science |
| primary_location.landing_page_url | https://doi.org/10.3389/fmars.2025.1507104 |
| publication_date | 2025-02-17 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4238406922, https://openalex.org/W2158089215, https://openalex.org/W2069621149, https://openalex.org/W1983993275, https://openalex.org/W2085456598, https://openalex.org/W4312176138, https://openalex.org/W6839294207, https://openalex.org/W4295129612, https://openalex.org/W3216358157, https://openalex.org/W4244846332, https://openalex.org/W2971370062, https://openalex.org/W2044774423, https://openalex.org/W4401629867, https://openalex.org/W2963862221, https://openalex.org/W6749494131, https://openalex.org/W6746545705, https://openalex.org/W2795250396, https://openalex.org/W4220871234, https://openalex.org/W2037220611, https://openalex.org/W2098101524, https://openalex.org/W3035646963, https://openalex.org/W6854516109, https://openalex.org/W4384652394, https://openalex.org/W3001083904, https://openalex.org/W6825610132, https://openalex.org/W4226272139, https://openalex.org/W4244199464, https://openalex.org/W2773133453, https://openalex.org/W4285817151, https://openalex.org/W2792373773 |
| referenced_works_count | 30 |
| abstract_inverted_index., | 3 |
| abstract_inverted_index.a | 82, 153, 178, 224, 234 |
| abstract_inverted_index.45 | 239 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 62 |
| abstract_inverted_index.an | 218, 229 |
| abstract_inverted_index.as | 177 |
| abstract_inverted_index.in | 66, 117, 184, 250 |
| abstract_inverted_index.it | 104, 120 |
| abstract_inverted_index.of | 15, 23, 161, 170, 190, 222, 227, 231, 238 |
| abstract_inverted_index.on | 50 |
| abstract_inverted_index.to | 35, 38, 57, 112 |
| abstract_inverted_index.The | 208 |
| abstract_inverted_index.and | 6, 26, 42, 53, 59, 68, 85, 91, 139, 163, 175, 198, 206, 233, 253 |
| abstract_inverted_index.are | 10, 33 |
| abstract_inverted_index.box | 132 |
| abstract_inverted_index.can | 18 |
| abstract_inverted_index.due | 37 |
| abstract_inverted_index.for | 95, 130, 172, 181, 258 |
| abstract_inverted_index.key | 114 |
| abstract_inverted_index.the | 20, 64, 109, 122, 136, 147, 168, 195 |
| abstract_inverted_index.two | 100 |
| abstract_inverted_index.was | 192 |
| abstract_inverted_index.FPS. | 240 |
| abstract_inverted_index.PLDD | 148, 166, 196 |
| abstract_inverted_index.This | 143 |
| abstract_inverted_index.also | 145 |
| abstract_inverted_index.both | 251 |
| abstract_inverted_index.data | 171 |
| abstract_inverted_index.fish | 96, 186, 260 |
| abstract_inverted_index.loss | 137 |
| abstract_inverted_index.more | 92 |
| abstract_inverted_index.over | 128 |
| abstract_inverted_index.rate | 22, 226 |
| abstract_inverted_index.rely | 49 |
| abstract_inverted_index.show | 210 |
| abstract_inverted_index.size | 41 |
| abstract_inverted_index.that | 88, 157, 211, 244 |
| abstract_inverted_index.this | 73, 173 |
| abstract_inverted_index.with | 217 |
| abstract_inverted_index.Point | 125 |
| abstract_inverted_index.These | 241 |
| abstract_inverted_index.newly | 154 |
| abstract_inverted_index.other | 248 |
| abstract_inverted_index.paper | 74, 144 |
| abstract_inverted_index.small | 40 |
| abstract_inverted_index.speed | 237 |
| abstract_inverted_index.their | 28, 39 |
| abstract_inverted_index.these | 16 |
| abstract_inverted_index.using | 194 |
| abstract_inverted_index.which | 107 |
| abstract_inverted_index.84.5%, | 223 |
| abstract_inverted_index.86.6%, | 228 |
| abstract_inverted_index.88.1%, | 232 |
| abstract_inverted_index.First, | 103 |
| abstract_inverted_index.Hirudo | 7 |
| abstract_inverted_index.MPDIoU | 123 |
| abstract_inverted_index.PLDNet | 76, 98, 191, 212, 245 |
| abstract_inverted_index.Timely | 13 |
| abstract_inverted_index.Union) | 129 |
| abstract_inverted_index.Vibrio | 4 |
| abstract_inverted_index.farms. | 97 |
| abstract_inverted_index.faster | 90 |
| abstract_inverted_index.images | 160 |
| abstract_inverted_index.manual | 46 |
| abstract_inverted_index.marine | 185 |
| abstract_inverted_index.method | 87 |
| abstract_inverted_index.models | 249 |
| abstract_inverted_index.recall | 225 |
| abstract_inverted_index.serves | 176 |
| abstract_inverted_index.subtle | 43 |
| abstract_inverted_index.Disease | 79, 151 |
| abstract_inverted_index.Second, | 119 |
| abstract_inverted_index.ability | 111 |
| abstract_inverted_index.address | 63 |
| abstract_inverted_index.against | 200 |
| abstract_inverted_index.average | 219 |
| abstract_inverted_index.common. | 12 |
| abstract_inverted_index.dataset | 156, 197 |
| abstract_inverted_index.disease | 5, 9, 115, 261 |
| abstract_inverted_index.employs | 105 |
| abstract_inverted_index.health. | 187 |
| abstract_inverted_index.healthy | 162 |
| abstract_inverted_index.images. | 118 |
| abstract_inverted_index.improve | 19 |
| abstract_inverted_index.leading | 56, 201 |
| [email protected] | 230 |
| abstract_inverted_index.methods | 48 |
| abstract_inverted_index.metrics | 242 |
| abstract_inverted_index.models, | 202 |
| abstract_inverted_index.prevent | 27 |
| abstract_inverted_index.results | 209 |
| abstract_inverted_index.species | 174 |
| abstract_inverted_index.spread. | 29 |
| abstract_inverted_index.(Minimum | 124 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.accuracy | 221, 252 |
| abstract_inverted_index.accurate | 93 |
| abstract_inverted_index.achieves | 213 |
| abstract_inverted_index.bounding | 131 |
| abstract_inverted_index.diseased | 164 |
| abstract_inverted_index.diseases | 17, 32 |
| abstract_inverted_index.enhances | 108 |
| abstract_inverted_index.function | 138 |
| abstract_inverted_index.identify | 113 |
| abstract_inverted_index.includes | 158 |
| abstract_inverted_index.personal | 51 |
| abstract_inverted_index.presents | 146 |
| abstract_inverted_index.proposes | 75 |
| abstract_inverted_index.provides | 89 |
| abstract_inverted_index.research | 183 |
| abstract_inverted_index.resource | 180 |
| abstract_inverted_index.scarcity | 169 |
| abstract_inverted_index.superior | 214 |
| abstract_inverted_index.survival | 21 |
| abstract_inverted_index.valuable | 179 |
| abstract_inverted_index.Dataset), | 152 |
| abstract_inverted_index.Detection | 80 |
| abstract_inverted_index.Empirical | 188 |
| abstract_inverted_index.Leopardus | 78, 150 |
| abstract_inverted_index.Network), | 81 |
| abstract_inverted_index.YOLOv8-n, | 204 |
| abstract_inverted_index.YOLOv9-c. | 207 |
| abstract_inverted_index.YOLOv9-m, | 205 |
| abstract_inverted_index.accuracy. | 142 |
| abstract_inverted_index.addresses | 167 |
| abstract_inverted_index.advancing | 182 |
| abstract_inverted_index.conducted | 193 |
| abstract_inverted_index.detecting | 67 |
| abstract_inverted_index.detection | 84, 215, 220 |
| abstract_inverted_index.developed | 155 |
| abstract_inverted_index.diagnoses | 94 |
| abstract_inverted_index.difficult | 34 |
| abstract_inverted_index.diseases, | 72 |
| abstract_inverted_index.improving | 140 |
| abstract_inverted_index.including | 203 |
| abstract_inverted_index.inference | 236 |
| abstract_inverted_index.judgment, | 55 |
| abstract_inverted_index.leopardus | 2, 25, 71 |
| abstract_inverted_index.model’s | 110 |
| abstract_inverted_index.parasitic | 8 |
| abstract_inverted_index.practical | 256 |
| abstract_inverted_index.providing | 255 |
| abstract_inverted_index.real-time | 83, 235, 259 |
| abstract_inverted_index.solutions | 257 |
| abstract_inverted_index.challenges | 65 |
| abstract_inverted_index.diagnoses. | 61 |
| abstract_inverted_index.experience | 52 |
| abstract_inverted_index.introduces | 121 |
| abstract_inverted_index.optimizing | 135 |
| abstract_inverted_index.relatively | 11 |
| abstract_inverted_index.similarity | 133 |
| abstract_inverted_index.specimens. | 165 |
| abstract_inverted_index.subjective | 54 |
| abstract_inverted_index.validation | 189 |
| abstract_inverted_index.Traditional | 45 |
| abstract_inverted_index.benchmarked | 199 |
| abstract_inverted_index.classifying | 69 |
| abstract_inverted_index.comparison, | 134 |
| abstract_inverted_index.demonstrate | 243 |
| abstract_inverted_index.distinguish | 36 |
| abstract_inverted_index.early-stage | 31 |
| abstract_inverted_index.efficiency, | 254 |
| abstract_inverted_index.error-prone | 60 |
| abstract_inverted_index.management. | 262 |
| abstract_inverted_index.outperforms | 247 |
| abstract_inverted_index.recognition | 14, 47, 86, 141 |
| abstract_inverted_index.significant | 101 |
| abstract_inverted_index.Intersection | 127 |
| abstract_inverted_index.Plectropomus | 1, 24, 70 |
| abstract_inverted_index.incorporates | 99 |
| abstract_inverted_index.performance, | 216 |
| abstract_inverted_index.(Plectropomus | 77, 149 |
| abstract_inverted_index.advancements: | 102 |
| abstract_inverted_index.comprehensive | 159 |
| abstract_inverted_index.significantly | 246 |
| abstract_inverted_index.Distance-based | 126 |
| abstract_inverted_index.time-consuming | 58 |
| abstract_inverted_index.characteristics | 116 |
| abstract_inverted_index.FocalModulation, | 106 |
| abstract_inverted_index.characteristics. | 44 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.03280715 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |