Point Cloud Attribute Compression via Successive Subspace Graph Transform Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2010.15302
Inspired by the recently proposed successive subspace learning (SSL) principles, we develop a successive subspace graph transform (SSGT) to address point cloud attribute compression in this work. The octree geometry structure is utilized to partition the point cloud, where every node of the octree represents a point cloud subspace with a certain spatial size. We design a weighted graph with self-loop to describe the subspace and define a graph Fourier transform based on the normalized graph Laplacian. The transforms are applied to large point clouds from the leaf nodes to the root node of the octree recursively, while the represented subspace is expanded from the smallest one to the whole point cloud successively. It is shown by experimental results that the proposed SSGT method offers better R-D performances than the previous Region Adaptive Haar Transform (RAHT) method.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2010.15302
- https://arxiv.org/pdf/2010.15302
- OA Status
- green
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3097893584
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3097893584Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2010.15302Digital Object Identifier
- Title
-
Point Cloud Attribute Compression via Successive Subspace Graph TransformWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-10-29Full publication date if available
- Authors
-
Yueru Chen, Yiting Shao, Jing Wang, Ge Li, C.‐C. Jay KuoList of authors in order
- Landing page
-
https://arxiv.org/abs/2010.15302Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2010.15302Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2010.15302Direct OA link when available
- Concepts
-
Octree, Subspace topology, Point cloud, Graph, Computer science, Laplacian matrix, Algorithm, Mathematics, Discrete mathematics, Theoretical computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3097893584 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2010.15302 |
| ids.doi | https://doi.org/10.48550/arxiv.2010.15302 |
| ids.mag | 3097893584 |
| ids.openalex | https://openalex.org/W3097893584 |
| fwci | |
| type | preprint |
| title | Point Cloud Attribute Compression via Successive Subspace Graph Transform |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10719 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | 3D Shape Modeling and Analysis |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9948999881744385 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T10638 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9757000207901001 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Optical measurement and interference techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C141297171 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8398966789245605 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1143237 |
| concepts[0].display_name | Octree |
| concepts[1].id | https://openalex.org/C32834561 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7769918441772461 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q660730 |
| concepts[1].display_name | Subspace topology |
| concepts[2].id | https://openalex.org/C131979681 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7194671630859375 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[2].display_name | Point cloud |
| concepts[3].id | https://openalex.org/C132525143 |
| concepts[3].level | 2 |
| concepts[3].score | 0.53266441822052 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[3].display_name | Graph |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5057098865509033 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C115178988 |
| concepts[5].level | 3 |
| concepts[5].score | 0.46704477071762085 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q772067 |
| concepts[5].display_name | Laplacian matrix |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.42606133222579956 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4133661389350891 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C118615104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32173800468444824 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[8].display_name | Discrete mathematics |
| concepts[9].id | https://openalex.org/C80444323 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3106086254119873 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[9].display_name | Theoretical computer science |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.268867552280426 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/octree |
| keywords[0].score | 0.8398966789245605 |
| keywords[0].display_name | Octree |
| keywords[1].id | https://openalex.org/keywords/subspace-topology |
| keywords[1].score | 0.7769918441772461 |
| keywords[1].display_name | Subspace topology |
| keywords[2].id | https://openalex.org/keywords/point-cloud |
| keywords[2].score | 0.7194671630859375 |
| keywords[2].display_name | Point cloud |
| keywords[3].id | https://openalex.org/keywords/graph |
| keywords[3].score | 0.53266441822052 |
| keywords[3].display_name | Graph |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5057098865509033 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/laplacian-matrix |
| keywords[5].score | 0.46704477071762085 |
| keywords[5].display_name | Laplacian matrix |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.42606133222579956 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.4133661389350891 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[8].score | 0.32173800468444824 |
| keywords[8].display_name | Discrete mathematics |
| keywords[9].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[9].score | 0.3106086254119873 |
| keywords[9].display_name | Theoretical computer science |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.268867552280426 |
| keywords[10].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2010.15302 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2010.15302 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2010.15302 |
| locations[1].id | doi:10.48550/arxiv.2010.15302 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2010.15302 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5009039461 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0580-5097 |
| authorships[0].author.display_name | Yueru Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210136793 |
| authorships[0].affiliations[0].raw_affiliation_string | Peng Cheng Laboratory,Shenzhen,China |
| authorships[0].institutions[0].id | https://openalex.org/I4210136793 |
| authorships[0].institutions[0].ror | https://ror.org/03qdqbt06 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210136793 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Peng Cheng Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yueru Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Peng Cheng Laboratory,Shenzhen,China |
| authorships[1].author.id | https://openalex.org/A5040696546 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9625-0124 |
| authorships[1].author.display_name | Yiting Shao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210128628 |
| authorships[1].affiliations[0].raw_affiliation_string | Peking University Shenzhen Graduate School, Shenzhen, China#TAB# |
| authorships[1].institutions[0].id | https://openalex.org/I4210128628 |
| authorships[1].institutions[0].ror | https://ror.org/03kkjyb15 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210128628 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Peking University Shenzhen Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yiting Shao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Peking University Shenzhen Graduate School, Shenzhen, China#TAB# |
| authorships[2].author.id | https://openalex.org/A5100378495 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3567-5281 |
| authorships[2].author.display_name | Jing Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210136793 |
| authorships[2].affiliations[0].raw_affiliation_string | Peng Cheng Laboratory,Shenzhen,China |
| authorships[2].institutions[0].id | https://openalex.org/I4210136793 |
| authorships[2].institutions[0].ror | https://ror.org/03qdqbt06 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210136793 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Peng Cheng Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jing Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Peng Cheng Laboratory,Shenzhen,China |
| authorships[3].author.id | https://openalex.org/A5100447691 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0140-0949 |
| authorships[3].author.display_name | Ge Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210128628 |
| authorships[3].affiliations[0].raw_affiliation_string | Peking University Shenzhen Graduate School, Shenzhen, China#TAB# |
| authorships[3].institutions[0].id | https://openalex.org/I4210128628 |
| authorships[3].institutions[0].ror | https://ror.org/03kkjyb15 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210128628 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Peking University Shenzhen Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ge Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Peking University Shenzhen Graduate School, Shenzhen, China#TAB# |
| authorships[4].author.id | https://openalex.org/A5001082656 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9474-5035 |
| authorships[4].author.display_name | C.‐C. Jay Kuo |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Southern California, Los Angeles, California - USA. |
| authorships[4].institutions[0].id | https://openalex.org/I1174212 |
| authorships[4].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Southern California |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | C.-C. Jay Kuo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Southern California, Los Angeles, California - USA. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2010.15302 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-11-09T00:00:00 |
| display_name | Point Cloud Attribute Compression via Successive Subspace Graph Transform |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10719 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | 3D Shape Modeling and Analysis |
| related_works | https://openalex.org/W2776826689, https://openalex.org/W2145484806, https://openalex.org/W2348653124, https://openalex.org/W2089908184, https://openalex.org/W2392270594, https://openalex.org/W2156453104, https://openalex.org/W2773541276, https://openalex.org/W4200108838, https://openalex.org/W2392034603, https://openalex.org/W2352029666 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2010.15302 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2010.15302 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2010.15302 |
| primary_location.id | pmh:oai:arXiv.org:2010.15302 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2010.15302 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2010.15302 |
| publication_date | 2020-10-29 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1989305571, https://openalex.org/W2132914434, https://openalex.org/W1986678681, https://openalex.org/W2415653907, https://openalex.org/W2894843516, https://openalex.org/W1529450504, https://openalex.org/W2516853023, https://openalex.org/W3102970498, https://openalex.org/W2996816325, https://openalex.org/W2998894876 |
| referenced_works_count | 10 |
| abstract_inverted_index.a | 12, 45, 50, 56, 67 |
| abstract_inverted_index.It | 113 |
| abstract_inverted_index.We | 54 |
| abstract_inverted_index.by | 1, 116 |
| abstract_inverted_index.in | 24 |
| abstract_inverted_index.is | 31, 101, 114 |
| abstract_inverted_index.of | 41, 93 |
| abstract_inverted_index.on | 72 |
| abstract_inverted_index.to | 18, 33, 61, 81, 89, 107 |
| abstract_inverted_index.we | 10 |
| abstract_inverted_index.R-D | 126 |
| abstract_inverted_index.The | 27, 77 |
| abstract_inverted_index.and | 65 |
| abstract_inverted_index.are | 79 |
| abstract_inverted_index.one | 106 |
| abstract_inverted_index.the | 2, 35, 42, 63, 73, 86, 90, 94, 98, 104, 108, 120, 129 |
| abstract_inverted_index.Haar | 133 |
| abstract_inverted_index.SSGT | 122 |
| abstract_inverted_index.from | 85, 103 |
| abstract_inverted_index.leaf | 87 |
| abstract_inverted_index.node | 40, 92 |
| abstract_inverted_index.root | 91 |
| abstract_inverted_index.than | 128 |
| abstract_inverted_index.that | 119 |
| abstract_inverted_index.this | 25 |
| abstract_inverted_index.with | 49, 59 |
| abstract_inverted_index.(SSL) | 8 |
| abstract_inverted_index.based | 71 |
| abstract_inverted_index.cloud | 21, 47, 111 |
| abstract_inverted_index.every | 39 |
| abstract_inverted_index.graph | 15, 58, 68, 75 |
| abstract_inverted_index.large | 82 |
| abstract_inverted_index.nodes | 88 |
| abstract_inverted_index.point | 20, 36, 46, 83, 110 |
| abstract_inverted_index.shown | 115 |
| abstract_inverted_index.size. | 53 |
| abstract_inverted_index.where | 38 |
| abstract_inverted_index.while | 97 |
| abstract_inverted_index.whole | 109 |
| abstract_inverted_index.work. | 26 |
| abstract_inverted_index.(RAHT) | 135 |
| abstract_inverted_index.(SSGT) | 17 |
| abstract_inverted_index.Region | 131 |
| abstract_inverted_index.better | 125 |
| abstract_inverted_index.cloud, | 37 |
| abstract_inverted_index.clouds | 84 |
| abstract_inverted_index.define | 66 |
| abstract_inverted_index.design | 55 |
| abstract_inverted_index.method | 123 |
| abstract_inverted_index.octree | 28, 43, 95 |
| abstract_inverted_index.offers | 124 |
| abstract_inverted_index.Fourier | 69 |
| abstract_inverted_index.address | 19 |
| abstract_inverted_index.applied | 80 |
| abstract_inverted_index.certain | 51 |
| abstract_inverted_index.develop | 11 |
| abstract_inverted_index.method. | 136 |
| abstract_inverted_index.results | 118 |
| abstract_inverted_index.spatial | 52 |
| abstract_inverted_index.Adaptive | 132 |
| abstract_inverted_index.Inspired | 0 |
| abstract_inverted_index.describe | 62 |
| abstract_inverted_index.expanded | 102 |
| abstract_inverted_index.geometry | 29 |
| abstract_inverted_index.learning | 7 |
| abstract_inverted_index.previous | 130 |
| abstract_inverted_index.proposed | 4, 121 |
| abstract_inverted_index.recently | 3 |
| abstract_inverted_index.smallest | 105 |
| abstract_inverted_index.subspace | 6, 14, 48, 64, 100 |
| abstract_inverted_index.utilized | 32 |
| abstract_inverted_index.weighted | 57 |
| abstract_inverted_index.Transform | 134 |
| abstract_inverted_index.attribute | 22 |
| abstract_inverted_index.partition | 34 |
| abstract_inverted_index.self-loop | 60 |
| abstract_inverted_index.structure | 30 |
| abstract_inverted_index.transform | 16, 70 |
| abstract_inverted_index.Laplacian. | 76 |
| abstract_inverted_index.normalized | 74 |
| abstract_inverted_index.represents | 44 |
| abstract_inverted_index.successive | 5, 13 |
| abstract_inverted_index.transforms | 78 |
| abstract_inverted_index.compression | 23 |
| abstract_inverted_index.principles, | 9 |
| abstract_inverted_index.represented | 99 |
| abstract_inverted_index.experimental | 117 |
| abstract_inverted_index.performances | 127 |
| abstract_inverted_index.recursively, | 96 |
| abstract_inverted_index.successively. | 112 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |