Pointing error compensation of electro-optical detection systems using Gaussian process regression Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1051/ijmqe/2021020
Pointing accuracy is an important indicator for electro-optical detection systems, as it significantly affects the system performance. However, as a result of misalignment, nonperpendicularity in the manufacturing and assembly processes, as well as the sensor errors such as camera distortion and angular sensor error, the pointing accuracy is significantly affected. These errors should be compensated before using the system. Parametric models are firstly proposed to compensate for the errors, whilst the semi-parametric models with the nonlinearity added are also put forward. Both methods should analyse the parametric part first, which is a complicated and inaccurate process. This paper presents a nonparametric model, without any prior information about mechanical dimensions, etc. It depends only on the test data. Gaussian Process regression is used to represent the relationship between data and predict the compensated output. The test results have shown that the regression variances have decreased by more than an order of magnitude, and the means have also been significantly reduced, with the pointing error well improved. The nonparametric model based on Gaussian Process is thus demonstrated to be an effective and powerful tool for the pointing error compensation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1051/ijmqe/2021020
- https://www.metrology-journal.org/articles/ijmqe/pdf/2021/01/ijmqe210007.pdf
- OA Status
- gold
- Cited By
- 8
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3198418403
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3198418403Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1051/ijmqe/2021020Digital Object Identifier
- Title
-
Pointing error compensation of electro-optical detection systems using Gaussian process regressionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Qijian Tang, Qingping Yang, Xiangjun Wang, Alistair ForbesList of authors in order
- Landing page
-
https://doi.org/10.1051/ijmqe/2021020Publisher landing page
- PDF URL
-
https://www.metrology-journal.org/articles/ijmqe/pdf/2021/01/ijmqe210007.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.metrology-journal.org/articles/ijmqe/pdf/2021/01/ijmqe210007.pdfDirect OA link when available
- Concepts
-
Parametric statistics, Nonparametric statistics, Compensation (psychology), Distortion (music), Process (computing), Nonparametric regression, Gaussian process, Computer science, Observational error, Kriging, Gaussian, Regression analysis, Control theory (sociology), Artificial intelligence, Mathematics, Statistics, Machine learning, Control (management), Bandwidth (computing), Psychology, Quantum mechanics, Amplifier, Psychoanalysis, Physics, Computer network, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 5, 2023: 3Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3198418403 |
|---|---|
| doi | https://doi.org/10.1051/ijmqe/2021020 |
| ids.doi | https://doi.org/10.1051/ijmqe/2021020 |
| ids.mag | 3198418403 |
| ids.openalex | https://openalex.org/W3198418403 |
| fwci | 2.43512365 |
| type | article |
| title | Pointing error compensation of electro-optical detection systems using Gaussian process regression |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 22 |
| biblio.first_page | 22 |
| topics[0].id | https://openalex.org/T12153 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9936000108718872 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3105 |
| topics[0].subfield.display_name | Instrumentation |
| topics[0].display_name | Advanced Optical Sensing Technologies |
| topics[1].id | https://openalex.org/T12814 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9919000267982483 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Gaussian Processes and Bayesian Inference |
| topics[2].id | https://openalex.org/T12389 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.989300012588501 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Infrared Target Detection Methodologies |
| is_xpac | False |
| apc_list.value | 300 |
| apc_list.currency | EUR |
| apc_list.value_usd | 323 |
| apc_paid.value | 300 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 323 |
| concepts[0].id | https://openalex.org/C117251300 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6645991802215576 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[0].display_name | Parametric statistics |
| concepts[1].id | https://openalex.org/C102366305 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6641647815704346 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1097688 |
| concepts[1].display_name | Nonparametric statistics |
| concepts[2].id | https://openalex.org/C2780023022 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6585832834243774 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1338171 |
| concepts[2].display_name | Compensation (psychology) |
| concepts[3].id | https://openalex.org/C126780896 |
| concepts[3].level | 4 |
| concepts[3].score | 0.6218410134315491 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q899871 |
| concepts[3].display_name | Distortion (music) |
| concepts[4].id | https://openalex.org/C98045186 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5731136202812195 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[4].display_name | Process (computing) |
| concepts[5].id | https://openalex.org/C74127309 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5437374114990234 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3455886 |
| concepts[5].display_name | Nonparametric regression |
| concepts[6].id | https://openalex.org/C61326573 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5401630997657776 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[6].display_name | Gaussian process |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.5335776209831238 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C19619285 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5301694869995117 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q196372 |
| concepts[8].display_name | Observational error |
| concepts[9].id | https://openalex.org/C81692654 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4614298343658447 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q225926 |
| concepts[9].display_name | Kriging |
| concepts[10].id | https://openalex.org/C163716315 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4518515467643738 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[10].display_name | Gaussian |
| concepts[11].id | https://openalex.org/C152877465 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4125481843948364 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[11].display_name | Regression analysis |
| concepts[12].id | https://openalex.org/C47446073 |
| concepts[12].level | 3 |
| concepts[12].score | 0.35811036825180054 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[12].display_name | Control theory (sociology) |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.24997830390930176 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.233501136302948 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.18714559078216553 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C119857082 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1061505377292633 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[16].display_name | Machine learning |
| concepts[17].id | https://openalex.org/C2775924081 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[17].display_name | Control (management) |
| concepts[18].id | https://openalex.org/C2776257435 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1576430 |
| concepts[18].display_name | Bandwidth (computing) |
| concepts[19].id | https://openalex.org/C15744967 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[19].display_name | Psychology |
| concepts[20].id | https://openalex.org/C62520636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[20].display_name | Quantum mechanics |
| concepts[21].id | https://openalex.org/C194257627 |
| concepts[21].level | 3 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q211554 |
| concepts[21].display_name | Amplifier |
| concepts[22].id | https://openalex.org/C11171543 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q41630 |
| concepts[22].display_name | Psychoanalysis |
| concepts[23].id | https://openalex.org/C121332964 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[23].display_name | Physics |
| concepts[24].id | https://openalex.org/C31258907 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[24].display_name | Computer network |
| concepts[25].id | https://openalex.org/C111919701 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[25].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/parametric-statistics |
| keywords[0].score | 0.6645991802215576 |
| keywords[0].display_name | Parametric statistics |
| keywords[1].id | https://openalex.org/keywords/nonparametric-statistics |
| keywords[1].score | 0.6641647815704346 |
| keywords[1].display_name | Nonparametric statistics |
| keywords[2].id | https://openalex.org/keywords/compensation |
| keywords[2].score | 0.6585832834243774 |
| keywords[2].display_name | Compensation (psychology) |
| keywords[3].id | https://openalex.org/keywords/distortion |
| keywords[3].score | 0.6218410134315491 |
| keywords[3].display_name | Distortion (music) |
| keywords[4].id | https://openalex.org/keywords/process |
| keywords[4].score | 0.5731136202812195 |
| keywords[4].display_name | Process (computing) |
| keywords[5].id | https://openalex.org/keywords/nonparametric-regression |
| keywords[5].score | 0.5437374114990234 |
| keywords[5].display_name | Nonparametric regression |
| keywords[6].id | https://openalex.org/keywords/gaussian-process |
| keywords[6].score | 0.5401630997657776 |
| keywords[6].display_name | Gaussian process |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.5335776209831238 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/observational-error |
| keywords[8].score | 0.5301694869995117 |
| keywords[8].display_name | Observational error |
| keywords[9].id | https://openalex.org/keywords/kriging |
| keywords[9].score | 0.4614298343658447 |
| keywords[9].display_name | Kriging |
| keywords[10].id | https://openalex.org/keywords/gaussian |
| keywords[10].score | 0.4518515467643738 |
| keywords[10].display_name | Gaussian |
| keywords[11].id | https://openalex.org/keywords/regression-analysis |
| keywords[11].score | 0.4125481843948364 |
| keywords[11].display_name | Regression analysis |
| keywords[12].id | https://openalex.org/keywords/control-theory |
| keywords[12].score | 0.35811036825180054 |
| keywords[12].display_name | Control theory (sociology) |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.24997830390930176 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.233501136302948 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.18714559078216553 |
| keywords[15].display_name | Statistics |
| keywords[16].id | https://openalex.org/keywords/machine-learning |
| keywords[16].score | 0.1061505377292633 |
| keywords[16].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1051/ijmqe/2021020 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S60719375 |
| locations[0].source.issn | 2107-6839, 2107-6847 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2107-6839 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Metrology and Quality Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_name | EDP Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_lineage_names | EDP Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.metrology-journal.org/articles/ijmqe/pdf/2021/01/ijmqe210007.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Metrology and Quality Engineering |
| locations[0].landing_page_url | https://doi.org/10.1051/ijmqe/2021020 |
| locations[1].id | pmh:oai:bura.brunel.ac.uk:2438/23168 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401473 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Brunel University Research Archive (BURA) (Brunel University London) |
| locations[1].source.host_organization | https://openalex.org/I59433898 |
| locations[1].source.host_organization_name | Brunel University of London |
| locations[1].source.host_organization_lineage | https://openalex.org/I59433898 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://bura.brunel.ac.uk/handle/2438/23168 |
| locations[2].id | pmh:oai:doaj.org/article:10b9da62716f438d8575708380c60e08 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | International Journal of Metrology and Quality Engineering, Vol 12, p 22 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/10b9da62716f438d8575708380c60e08 |
| locations[3].id | pmh:oai:edpsciences.org:dkey/10.1051/ijmqe/2021020 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306400744 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Springer Link (Chiba Institute of Technology) |
| locations[3].source.host_organization | https://openalex.org/I8488066 |
| locations[3].source.host_organization_name | Chiba Institute of Technology |
| locations[3].source.host_organization_lineage | https://openalex.org/I8488066 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | https://doi.org/10.1051/ijmqe/2021020 |
| locations[3].landing_page_url | |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5065928010 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8862-7646 |
| authorships[0].author.display_name | Qijian Tang |
| authorships[0].countries | CN, GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I59433898 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I180726961 |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen Guangdong 518060, PR China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I162868743 |
| authorships[0].affiliations[2].raw_affiliation_string | MOEMS Education Ministry Key Laboratory, Tianjin University, Tianjin 300072, PR China |
| authorships[0].institutions[0].id | https://openalex.org/I180726961 |
| authorships[0].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shenzhen University |
| authorships[0].institutions[1].id | https://openalex.org/I162868743 |
| authorships[0].institutions[1].ror | https://ror.org/012tb2g32 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I162868743 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Tianjin University |
| authorships[0].institutions[2].id | https://openalex.org/I59433898 |
| authorships[0].institutions[2].ror | https://ror.org/00dn4t376 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I59433898 |
| authorships[0].institutions[2].country_code | GB |
| authorships[0].institutions[2].display_name | Brunel University of London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qijian Tang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen Guangdong 518060, PR China, MOEMS Education Ministry Key Laboratory, Tianjin University, Tianjin 300072, PR China |
| authorships[1].author.id | https://openalex.org/A5056986595 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2557-8752 |
| authorships[1].author.display_name | Qingping Yang |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I59433898 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK |
| authorships[1].institutions[0].id | https://openalex.org/I59433898 |
| authorships[1].institutions[0].ror | https://ror.org/00dn4t376 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I59433898 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Brunel University of London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qingping Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK |
| authorships[2].author.id | https://openalex.org/A5027618654 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0782-3814 |
| authorships[2].author.display_name | Xiangjun Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I162868743 |
| authorships[2].affiliations[0].raw_affiliation_string | MOEMS Education Ministry Key Laboratory, Tianjin University, Tianjin 300072, PR China |
| authorships[2].institutions[0].id | https://openalex.org/I162868743 |
| authorships[2].institutions[0].ror | https://ror.org/012tb2g32 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I162868743 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Tianjin University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiangjun Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | MOEMS Education Ministry Key Laboratory, Tianjin University, Tianjin 300072, PR China |
| authorships[3].author.id | https://openalex.org/A5083084249 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6640-9691 |
| authorships[3].author.display_name | Alistair Forbes |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I134421475 |
| authorships[3].affiliations[0].raw_affiliation_string | National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK |
| authorships[3].institutions[0].id | https://openalex.org/I134421475 |
| authorships[3].institutions[0].ror | https://ror.org/015w2mp89 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I134421475 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | National Physical Laboratory |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Alistair B. Forbes |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.metrology-journal.org/articles/ijmqe/pdf/2021/01/ijmqe210007.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Pointing error compensation of electro-optical detection systems using Gaussian process regression |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12153 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9936000108718872 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3105 |
| primary_topic.subfield.display_name | Instrumentation |
| primary_topic.display_name | Advanced Optical Sensing Technologies |
| related_works | https://openalex.org/W1541412963, https://openalex.org/W2184572292, https://openalex.org/W1509119367, https://openalex.org/W566010457, https://openalex.org/W2600092203, https://openalex.org/W4321367829, https://openalex.org/W4293503520, https://openalex.org/W2041704562, https://openalex.org/W4309301076, https://openalex.org/W4300066510 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1051/ijmqe/2021020 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S60719375 |
| best_oa_location.source.issn | 2107-6839, 2107-6847 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2107-6839 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Metrology and Quality Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_name | EDP Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_lineage_names | EDP Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.metrology-journal.org/articles/ijmqe/pdf/2021/01/ijmqe210007.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Metrology and Quality Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1051/ijmqe/2021020 |
| primary_location.id | doi:10.1051/ijmqe/2021020 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S60719375 |
| primary_location.source.issn | 2107-6839, 2107-6847 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2107-6839 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Metrology and Quality Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_name | EDP Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_lineage_names | EDP Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.metrology-journal.org/articles/ijmqe/pdf/2021/01/ijmqe210007.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Metrology and Quality Engineering |
| primary_location.landing_page_url | https://doi.org/10.1051/ijmqe/2021020 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2119745013, https://openalex.org/W2015496084, https://openalex.org/W2013318236, https://openalex.org/W3049238352, https://openalex.org/W2950765299, https://openalex.org/W2800295375, https://openalex.org/W2312712635, https://openalex.org/W2969162998, https://openalex.org/W2797705853, https://openalex.org/W1981223329, https://openalex.org/W2904816695, https://openalex.org/W1502922572, https://openalex.org/W4211049957, https://openalex.org/W1646943661, https://openalex.org/W1746819321, https://openalex.org/W2161767008, https://openalex.org/W2107386393, https://openalex.org/W2085689611, https://openalex.org/W2307774491, https://openalex.org/W4212774754, https://openalex.org/W2185042715 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 19, 91, 99 |
| abstract_inverted_index.It | 110 |
| abstract_inverted_index.an | 3, 147, 177 |
| abstract_inverted_index.as | 10, 18, 30, 32, 37 |
| abstract_inverted_index.be | 53, 176 |
| abstract_inverted_index.by | 144 |
| abstract_inverted_index.in | 24 |
| abstract_inverted_index.is | 2, 47, 90, 120, 172 |
| abstract_inverted_index.it | 11 |
| abstract_inverted_index.of | 21, 149 |
| abstract_inverted_index.on | 113, 169 |
| abstract_inverted_index.to | 64, 122, 175 |
| abstract_inverted_index.The | 133, 165 |
| abstract_inverted_index.and | 27, 40, 93, 128, 151, 179 |
| abstract_inverted_index.any | 103 |
| abstract_inverted_index.are | 61, 77 |
| abstract_inverted_index.for | 6, 66, 182 |
| abstract_inverted_index.put | 79 |
| abstract_inverted_index.the | 14, 25, 33, 44, 57, 67, 70, 74, 85, 114, 124, 130, 139, 152, 160, 183 |
| abstract_inverted_index.Both | 81 |
| abstract_inverted_index.This | 96 |
| abstract_inverted_index.also | 78, 155 |
| abstract_inverted_index.been | 156 |
| abstract_inverted_index.data | 127 |
| abstract_inverted_index.etc. | 109 |
| abstract_inverted_index.have | 136, 142, 154 |
| abstract_inverted_index.more | 145 |
| abstract_inverted_index.only | 112 |
| abstract_inverted_index.part | 87 |
| abstract_inverted_index.such | 36 |
| abstract_inverted_index.test | 115, 134 |
| abstract_inverted_index.than | 146 |
| abstract_inverted_index.that | 138 |
| abstract_inverted_index.thus | 173 |
| abstract_inverted_index.tool | 181 |
| abstract_inverted_index.used | 121 |
| abstract_inverted_index.well | 31, 163 |
| abstract_inverted_index.with | 73, 159 |
| abstract_inverted_index.These | 50 |
| abstract_inverted_index.about | 106 |
| abstract_inverted_index.added | 76 |
| abstract_inverted_index.based | 168 |
| abstract_inverted_index.data. | 116 |
| abstract_inverted_index.error | 162, 185 |
| abstract_inverted_index.means | 153 |
| abstract_inverted_index.model | 167 |
| abstract_inverted_index.order | 148 |
| abstract_inverted_index.paper | 97 |
| abstract_inverted_index.prior | 104 |
| abstract_inverted_index.shown | 137 |
| abstract_inverted_index.using | 56 |
| abstract_inverted_index.which | 89 |
| abstract_inverted_index.before | 55 |
| abstract_inverted_index.camera | 38 |
| abstract_inverted_index.error, | 43 |
| abstract_inverted_index.errors | 35, 51 |
| abstract_inverted_index.first, | 88 |
| abstract_inverted_index.model, | 101 |
| abstract_inverted_index.models | 60, 72 |
| abstract_inverted_index.result | 20 |
| abstract_inverted_index.sensor | 34, 42 |
| abstract_inverted_index.should | 52, 83 |
| abstract_inverted_index.system | 15 |
| abstract_inverted_index.whilst | 69 |
| abstract_inverted_index.Process | 118, 171 |
| abstract_inverted_index.affects | 13 |
| abstract_inverted_index.analyse | 84 |
| abstract_inverted_index.angular | 41 |
| abstract_inverted_index.between | 126 |
| abstract_inverted_index.depends | 111 |
| abstract_inverted_index.errors, | 68 |
| abstract_inverted_index.firstly | 62 |
| abstract_inverted_index.methods | 82 |
| abstract_inverted_index.output. | 132 |
| abstract_inverted_index.predict | 129 |
| abstract_inverted_index.results | 135 |
| abstract_inverted_index.system. | 58 |
| abstract_inverted_index.without | 102 |
| abstract_inverted_index.Gaussian | 117, 170 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.Pointing | 0 |
| abstract_inverted_index.accuracy | 1, 46 |
| abstract_inverted_index.assembly | 28 |
| abstract_inverted_index.forward. | 80 |
| abstract_inverted_index.pointing | 45, 161, 184 |
| abstract_inverted_index.powerful | 180 |
| abstract_inverted_index.presents | 98 |
| abstract_inverted_index.process. | 95 |
| abstract_inverted_index.proposed | 63 |
| abstract_inverted_index.reduced, | 158 |
| abstract_inverted_index.systems, | 9 |
| abstract_inverted_index.affected. | 49 |
| abstract_inverted_index.decreased | 143 |
| abstract_inverted_index.detection | 8 |
| abstract_inverted_index.effective | 178 |
| abstract_inverted_index.important | 4 |
| abstract_inverted_index.improved. | 164 |
| abstract_inverted_index.indicator | 5 |
| abstract_inverted_index.represent | 123 |
| abstract_inverted_index.variances | 141 |
| abstract_inverted_index.Parametric | 59 |
| abstract_inverted_index.compensate | 65 |
| abstract_inverted_index.distortion | 39 |
| abstract_inverted_index.inaccurate | 94 |
| abstract_inverted_index.magnitude, | 150 |
| abstract_inverted_index.mechanical | 107 |
| abstract_inverted_index.parametric | 86 |
| abstract_inverted_index.processes, | 29 |
| abstract_inverted_index.regression | 119, 140 |
| abstract_inverted_index.compensated | 54, 131 |
| abstract_inverted_index.complicated | 92 |
| abstract_inverted_index.dimensions, | 108 |
| abstract_inverted_index.information | 105 |
| abstract_inverted_index.demonstrated | 174 |
| abstract_inverted_index.nonlinearity | 75 |
| abstract_inverted_index.performance. | 16 |
| abstract_inverted_index.relationship | 125 |
| abstract_inverted_index.compensation. | 186 |
| abstract_inverted_index.manufacturing | 26 |
| abstract_inverted_index.misalignment, | 22 |
| abstract_inverted_index.nonparametric | 100, 166 |
| abstract_inverted_index.significantly | 12, 48, 157 |
| abstract_inverted_index.electro-optical | 7 |
| abstract_inverted_index.semi-parametric | 71 |
| abstract_inverted_index.nonperpendicularity | 23 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.93405226 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |