Polarimetric Persistent Scatterer Interferometry for Ground Deformation Monitoring with VV-VH Sentinel-1 Data Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/rs14020309
With the launch of the Sentinel-1 satellites, it becomes easy to obtain long time-series dual-pol (i.e., VV and VH channels) SAR images over most areas of the world. By combining the information from both VV and VH channels, the polarimetric persistent scatterer interferometry (PolPSI) techniques is supposed to achieve better ground deformation monitoring results than conventional PSI techniques (using only VV channel) with Sentinel-1 data. According to the quality metric used for polarimetric optimizations, the most commonly used PolPSI techniques can be categorized into three main categories. They are PolPSI-ADI (amplitude dispersion index as the phase quality metric), PolPSI-COH (coherence as the phase quality metric), and PolPSI-AOS (taking adaptive optimization strategies). Different categories of PolPSI techniques are suitable for different study areas and with different performances. However, the study that simultaneously applies all the three types of PolPSI techniques on Sentinel-1 PolSAR images is rare. Moreover, there has been little discussion about different characteristics of the three types of PolPSI techniques and how to use them with Sentinel-1 data. To this end, in this study, three data sets in China have been used to evaluate the three types of PolPSI techniques’ performances. Based on results obtained, the different characteristics of PolPSI techniques have been discussed. The results show that all three PolPSI techniques can improve the phase quality of interferograms. Thus, more qualified pixels can be used for ground deformation estimation by PolPSI methods with respect to the PSI technique. Specifically, this pixel density improvement is 50%, 12%, and 348% for the PolPSI-ADI, PolPSI-COH, and POlPSI-AOS, respectively. PolPSI-ADI is the most efficient method, and it is the first choice for the area with abundant deterministic scatterers (e.g., urban areas). Benefitting from its adaptive optimization strategy, PolPSI-AOS has the best performances at the price of highest computation cost, which is suitable for rural area applications. On the other hand, limited by the medium resolution of Sentinel-1 PolSAR images, PolPSI-COH’s improvement with respect to conventional PSI is relatively insignificant.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs14020309
- https://www.mdpi.com/2072-4292/14/2/309/pdf?version=1641951051
- OA Status
- gold
- Cited By
- 19
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4205817231
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4205817231Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs14020309Digital Object Identifier
- Title
-
Polarimetric Persistent Scatterer Interferometry for Ground Deformation Monitoring with VV-VH Sentinel-1 DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-10Full publication date if available
- Authors
-
Feng Zhao, Teng Wang, Leixin Zhang, Feng Han, Shiyong Yan, Hongdong Fan, Dongbiao Xu, Yunjia WangList of authors in order
- Landing page
-
https://doi.org/10.3390/rs14020309Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/14/2/309/pdf?version=1641951051Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/14/2/309/pdf?version=1641951051Direct OA link when available
- Concepts
-
Remote sensing, Interferometry, Polarimetry, Computer science, Pixel, Metric (unit), Geology, Artificial intelligence, Optics, Physics, Scattering, Operations management, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 2, 2023: 6, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4205817231 |
|---|---|
| doi | https://doi.org/10.3390/rs14020309 |
| ids.doi | https://doi.org/10.3390/rs14020309 |
| ids.openalex | https://openalex.org/W4205817231 |
| fwci | 6.42543446 |
| type | article |
| title | Polarimetric Persistent Scatterer Interferometry for Ground Deformation Monitoring with VV-VH Sentinel-1 Data |
| awards[0].id | https://openalex.org/G7233947566 |
| awards[0].funder_id | https://openalex.org/F4320321543 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2020M671646 |
| awards[0].funder_display_name | China Postdoctoral Science Foundation |
| awards[1].id | https://openalex.org/G6705030071 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 41874044 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G3967894319 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 42004011 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 2 |
| biblio.volume | 14 |
| biblio.last_page | 309 |
| biblio.first_page | 309 |
| topics[0].id | https://openalex.org/T10801 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Synthetic Aperture Radar (SAR) Applications and Techniques |
| topics[1].id | https://openalex.org/T11312 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9891999959945679 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Soil Moisture and Remote Sensing |
| topics[2].id | https://openalex.org/T10644 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9775000214576721 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Cryospheric studies and observations |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321543 |
| funders[1].ror | https://ror.org/0426zh255 |
| funders[1].display_name | China Postdoctoral Science Foundation |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C62649853 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6475801467895508 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[0].display_name | Remote sensing |
| concepts[1].id | https://openalex.org/C166689943 |
| concepts[1].level | 2 |
| concepts[1].score | 0.642725944519043 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q850283 |
| concepts[1].display_name | Interferometry |
| concepts[2].id | https://openalex.org/C28493345 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5741727948188782 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q899381 |
| concepts[2].display_name | Polarimetry |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5699236989021301 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C160633673 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4621577560901642 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[4].display_name | Pixel |
| concepts[5].id | https://openalex.org/C176217482 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4440460503101349 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[5].display_name | Metric (unit) |
| concepts[6].id | https://openalex.org/C127313418 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2729896903038025 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[6].display_name | Geology |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.19167184829711914 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C120665830 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1690579354763031 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[8].display_name | Optics |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.1160418689250946 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C191486275 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q210028 |
| concepts[10].display_name | Scattering |
| concepts[11].id | https://openalex.org/C21547014 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[11].display_name | Operations management |
| concepts[12].id | https://openalex.org/C162324750 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[12].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/remote-sensing |
| keywords[0].score | 0.6475801467895508 |
| keywords[0].display_name | Remote sensing |
| keywords[1].id | https://openalex.org/keywords/interferometry |
| keywords[1].score | 0.642725944519043 |
| keywords[1].display_name | Interferometry |
| keywords[2].id | https://openalex.org/keywords/polarimetry |
| keywords[2].score | 0.5741727948188782 |
| keywords[2].display_name | Polarimetry |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5699236989021301 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/pixel |
| keywords[4].score | 0.4621577560901642 |
| keywords[4].display_name | Pixel |
| keywords[5].id | https://openalex.org/keywords/metric |
| keywords[5].score | 0.4440460503101349 |
| keywords[5].display_name | Metric (unit) |
| keywords[6].id | https://openalex.org/keywords/geology |
| keywords[6].score | 0.2729896903038025 |
| keywords[6].display_name | Geology |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.19167184829711914 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/optics |
| keywords[8].score | 0.1690579354763031 |
| keywords[8].display_name | Optics |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.1160418689250946 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3390/rs14020309 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/14/2/309/pdf?version=1641951051 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs14020309 |
| locations[1].id | pmh:oai:doaj.org/article:4592f632fcc04e1e87bb3a350e8a14dc |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 14, Iss 2, p 309 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/4592f632fcc04e1e87bb3a350e8a14dc |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/14/2/309/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 14; Issue 2; Pages: 309 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs14020309 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5029370118 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8750-5340 |
| authorships[0].author.display_name | Feng Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Land Environment and Disaster Monitoring, MNR, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[0].institutions[0].id | https://openalex.org/I25757504 |
| authorships[0].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China University of Mining and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Feng Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Land Environment and Disaster Monitoring, MNR, China University of Mining and Technology, Xuzhou 221116, China, School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[1].author.id | https://openalex.org/A5100348950 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7322-2822 |
| authorships[1].author.display_name | Teng Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Land Environment and Disaster Monitoring, MNR, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[1].institutions[0].id | https://openalex.org/I25757504 |
| authorships[1].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China University of Mining and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Teng Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Land Environment and Disaster Monitoring, MNR, China University of Mining and Technology, Xuzhou 221116, China, School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[2].author.id | https://openalex.org/A5033102791 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9167-2966 |
| authorships[2].author.display_name | Leixin Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[2].affiliations[1].raw_affiliation_string | Key Laboratory of Land Environment and Disaster Monitoring, MNR, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[2].institutions[0].id | https://openalex.org/I25757504 |
| authorships[2].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China University of Mining and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Leixin Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Land Environment and Disaster Monitoring, MNR, China University of Mining and Technology, Xuzhou 221116, China, School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[3].author.id | https://openalex.org/A5102668439 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2461-4897 |
| authorships[3].author.display_name | Feng Han |
| authorships[3].affiliations[0].raw_affiliation_string | Guizhou Provincial First Institute of Surveying and Mapping, Guiyang 550025, China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Han Feng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Guizhou Provincial First Institute of Surveying and Mapping, Guiyang 550025, China |
| authorships[4].author.id | https://openalex.org/A5101885174 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9577-1662 |
| authorships[4].author.display_name | Shiyong Yan |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[4].affiliations[1].raw_affiliation_string | Key Laboratory of Land Environment and Disaster Monitoring, MNR, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[4].institutions[0].id | https://openalex.org/I25757504 |
| authorships[4].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | China University of Mining and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shiyong Yan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Land Environment and Disaster Monitoring, MNR, China University of Mining and Technology, Xuzhou 221116, China, School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[5].author.id | https://openalex.org/A5103282376 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3098-7371 |
| authorships[5].author.display_name | Hongdong Fan |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[5].affiliations[1].raw_affiliation_string | Key Laboratory of Land Environment and Disaster Monitoring, MNR, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[5].institutions[0].id | https://openalex.org/I25757504 |
| authorships[5].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | China University of Mining and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hongdong Fan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Key Laboratory of Land Environment and Disaster Monitoring, MNR, China University of Mining and Technology, Xuzhou 221116, China, School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[6].author.id | https://openalex.org/A5038961496 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Dongbiao Xu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210158179 |
| authorships[6].affiliations[1].raw_affiliation_string | Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450000, China |
| authorships[6].affiliations[2].institution_ids | https://openalex.org/I25757504 |
| authorships[6].affiliations[2].raw_affiliation_string | Key Laboratory of Land Environment and Disaster Monitoring, MNR, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[6].institutions[0].id | https://openalex.org/I25757504 |
| authorships[6].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | China University of Mining and Technology |
| authorships[6].institutions[1].id | https://openalex.org/I4210158179 |
| authorships[6].institutions[1].ror | https://ror.org/0506q7a98 |
| authorships[6].institutions[1].type | government |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210155611, https://openalex.org/I4210158179 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Yellow River Institute of Hydraulic Research |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Dongbiao Xu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Key Laboratory of Land Environment and Disaster Monitoring, MNR, China University of Mining and Technology, Xuzhou 221116, China, School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China, Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450000, China |
| authorships[7].author.id | https://openalex.org/A5018788326 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1903-242X |
| authorships[7].author.display_name | Yunjia Wang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[7].affiliations[0].raw_affiliation_string | Key Laboratory of Land Environment and Disaster Monitoring, MNR, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[7].affiliations[1].raw_affiliation_string | School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[7].institutions[0].id | https://openalex.org/I25757504 |
| authorships[7].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | China University of Mining and Technology |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yunjia Wang |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Key Laboratory of Land Environment and Disaster Monitoring, MNR, China University of Mining and Technology, Xuzhou 221116, China, School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/14/2/309/pdf?version=1641951051 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-01-26T00:00:00 |
| display_name | Polarimetric Persistent Scatterer Interferometry for Ground Deformation Monitoring with VV-VH Sentinel-1 Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10801 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Synthetic Aperture Radar (SAR) Applications and Techniques |
| related_works | https://openalex.org/W2026860918, https://openalex.org/W2035593284, https://openalex.org/W2225281849, https://openalex.org/W2612145225, https://openalex.org/W2161058488, https://openalex.org/W2180015210, https://openalex.org/W2059660610, https://openalex.org/W1988809445, https://openalex.org/W2112026144, https://openalex.org/W2389313026 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs14020309 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/14/2/309/pdf?version=1641951051 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs14020309 |
| primary_location.id | doi:10.3390/rs14020309 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/14/2/309/pdf?version=1641951051 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs14020309 |
| publication_date | 2022-01-10 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2099008772, https://openalex.org/W2047029664, https://openalex.org/W2152657318, https://openalex.org/W2150207495, https://openalex.org/W1672745209, https://openalex.org/W2048638671, https://openalex.org/W1983405929, https://openalex.org/W2960977325, https://openalex.org/W2131434734, https://openalex.org/W2006907556, https://openalex.org/W2318145919, https://openalex.org/W3097894967, https://openalex.org/W2892285451, https://openalex.org/W3088547701, https://openalex.org/W6790825978, https://openalex.org/W3175161828, https://openalex.org/W3124914662, https://openalex.org/W2808168520, https://openalex.org/W3159751217, https://openalex.org/W2123632763, https://openalex.org/W2052893527, https://openalex.org/W2240774825, https://openalex.org/W1998628209, https://openalex.org/W2065822370, https://openalex.org/W2118906935, https://openalex.org/W2149555862, https://openalex.org/W2080292346, https://openalex.org/W1973934579, https://openalex.org/W2034512073, https://openalex.org/W1965015894, https://openalex.org/W2008680746, https://openalex.org/W2338441278, https://openalex.org/W2790778532, https://openalex.org/W2808786503, https://openalex.org/W2950533368, https://openalex.org/W2944645859, https://openalex.org/W3124675757, https://openalex.org/W3180063275, https://openalex.org/W3135510731, https://openalex.org/W2824586343, https://openalex.org/W6767067151, https://openalex.org/W3012031677, https://openalex.org/W2013211795, https://openalex.org/W2008542193, https://openalex.org/W2098369207, https://openalex.org/W2130762895, https://openalex.org/W3023777614, https://openalex.org/W3205292443, https://openalex.org/W2789815737, https://openalex.org/W3128797699, https://openalex.org/W2970903159 |
| referenced_works_count | 51 |
| abstract_inverted_index.By | 28 |
| abstract_inverted_index.On | 304 |
| abstract_inverted_index.To | 169 |
| abstract_inverted_index.VH | 18, 36 |
| abstract_inverted_index.VV | 16, 34, 60 |
| abstract_inverted_index.as | 93, 100 |
| abstract_inverted_index.at | 290 |
| abstract_inverted_index.be | 81, 225 |
| abstract_inverted_index.by | 231, 309 |
| abstract_inverted_index.in | 172, 178 |
| abstract_inverted_index.is | 45, 143, 245, 258, 265, 298, 324 |
| abstract_inverted_index.it | 7, 264 |
| abstract_inverted_index.of | 3, 25, 113, 136, 154, 158, 188, 199, 218, 293, 313 |
| abstract_inverted_index.on | 139, 193 |
| abstract_inverted_index.to | 10, 47, 66, 163, 183, 236, 321 |
| abstract_inverted_index.PSI | 56, 238, 323 |
| abstract_inverted_index.SAR | 20 |
| abstract_inverted_index.The | 205 |
| abstract_inverted_index.all | 132, 209 |
| abstract_inverted_index.and | 17, 35, 105, 122, 161, 248, 254, 263 |
| abstract_inverted_index.are | 88, 116 |
| abstract_inverted_index.can | 80, 213, 224 |
| abstract_inverted_index.for | 71, 118, 227, 250, 269, 300 |
| abstract_inverted_index.has | 147, 286 |
| abstract_inverted_index.how | 162 |
| abstract_inverted_index.its | 281 |
| abstract_inverted_index.the | 1, 4, 26, 30, 38, 67, 74, 94, 101, 127, 133, 155, 185, 196, 215, 237, 251, 259, 266, 270, 287, 291, 305, 310 |
| abstract_inverted_index.use | 164 |
| abstract_inverted_index.12%, | 247 |
| abstract_inverted_index.348% | 249 |
| abstract_inverted_index.50%, | 246 |
| abstract_inverted_index.They | 87 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.area | 271, 302 |
| abstract_inverted_index.been | 148, 181, 203 |
| abstract_inverted_index.best | 288 |
| abstract_inverted_index.both | 33 |
| abstract_inverted_index.data | 176 |
| abstract_inverted_index.easy | 9 |
| abstract_inverted_index.end, | 171 |
| abstract_inverted_index.from | 32, 280 |
| abstract_inverted_index.have | 180, 202 |
| abstract_inverted_index.into | 83 |
| abstract_inverted_index.long | 12 |
| abstract_inverted_index.main | 85 |
| abstract_inverted_index.more | 221 |
| abstract_inverted_index.most | 23, 75, 260 |
| abstract_inverted_index.only | 59 |
| abstract_inverted_index.over | 22 |
| abstract_inverted_index.sets | 177 |
| abstract_inverted_index.show | 207 |
| abstract_inverted_index.than | 54 |
| abstract_inverted_index.that | 129, 208 |
| abstract_inverted_index.them | 165 |
| abstract_inverted_index.this | 170, 173, 241 |
| abstract_inverted_index.used | 70, 77, 182, 226 |
| abstract_inverted_index.with | 62, 123, 166, 234, 272, 319 |
| abstract_inverted_index.Based | 192 |
| abstract_inverted_index.China | 179 |
| abstract_inverted_index.Thus, | 220 |
| abstract_inverted_index.about | 151 |
| abstract_inverted_index.areas | 24, 121 |
| abstract_inverted_index.cost, | 296 |
| abstract_inverted_index.data. | 64, 168 |
| abstract_inverted_index.first | 267 |
| abstract_inverted_index.hand, | 307 |
| abstract_inverted_index.index | 92 |
| abstract_inverted_index.other | 306 |
| abstract_inverted_index.phase | 95, 102, 216 |
| abstract_inverted_index.pixel | 242 |
| abstract_inverted_index.price | 292 |
| abstract_inverted_index.rare. | 144 |
| abstract_inverted_index.rural | 301 |
| abstract_inverted_index.study | 120, 128 |
| abstract_inverted_index.there | 146 |
| abstract_inverted_index.three | 84, 134, 156, 175, 186, 210 |
| abstract_inverted_index.types | 135, 157, 187 |
| abstract_inverted_index.urban | 277 |
| abstract_inverted_index.which | 297 |
| abstract_inverted_index.(e.g., | 276 |
| abstract_inverted_index.(i.e., | 15 |
| abstract_inverted_index.(using | 58 |
| abstract_inverted_index.PolPSI | 78, 114, 137, 159, 189, 200, 211, 232 |
| abstract_inverted_index.PolSAR | 141, 315 |
| abstract_inverted_index.better | 49 |
| abstract_inverted_index.choice | 268 |
| abstract_inverted_index.ground | 50, 228 |
| abstract_inverted_index.images | 21, 142 |
| abstract_inverted_index.launch | 2 |
| abstract_inverted_index.little | 149 |
| abstract_inverted_index.medium | 311 |
| abstract_inverted_index.metric | 69 |
| abstract_inverted_index.obtain | 11 |
| abstract_inverted_index.pixels | 223 |
| abstract_inverted_index.study, | 174 |
| abstract_inverted_index.world. | 27 |
| abstract_inverted_index.(taking | 107 |
| abstract_inverted_index.achieve | 48 |
| abstract_inverted_index.applies | 131 |
| abstract_inverted_index.areas). | 278 |
| abstract_inverted_index.becomes | 8 |
| abstract_inverted_index.density | 243 |
| abstract_inverted_index.highest | 294 |
| abstract_inverted_index.images, | 316 |
| abstract_inverted_index.improve | 214 |
| abstract_inverted_index.limited | 308 |
| abstract_inverted_index.method, | 262 |
| abstract_inverted_index.methods | 233 |
| abstract_inverted_index.quality | 68, 96, 103, 217 |
| abstract_inverted_index.respect | 235, 320 |
| abstract_inverted_index.results | 53, 194, 206 |
| abstract_inverted_index.(PolPSI) | 43 |
| abstract_inverted_index.However, | 126 |
| abstract_inverted_index.abundant | 273 |
| abstract_inverted_index.adaptive | 108, 282 |
| abstract_inverted_index.channel) | 61 |
| abstract_inverted_index.commonly | 76 |
| abstract_inverted_index.dual-pol | 14 |
| abstract_inverted_index.evaluate | 184 |
| abstract_inverted_index.metric), | 97, 104 |
| abstract_inverted_index.suitable | 117, 299 |
| abstract_inverted_index.supposed | 46 |
| abstract_inverted_index.According | 65 |
| abstract_inverted_index.Different | 111 |
| abstract_inverted_index.Moreover, | 145 |
| abstract_inverted_index.channels) | 19 |
| abstract_inverted_index.channels, | 37 |
| abstract_inverted_index.combining | 29 |
| abstract_inverted_index.different | 119, 124, 152, 197 |
| abstract_inverted_index.efficient | 261 |
| abstract_inverted_index.obtained, | 195 |
| abstract_inverted_index.qualified | 222 |
| abstract_inverted_index.scatterer | 41 |
| abstract_inverted_index.strategy, | 284 |
| abstract_inverted_index.(amplitude | 90 |
| abstract_inverted_index.(coherence | 99 |
| abstract_inverted_index.PolPSI-ADI | 89, 257 |
| abstract_inverted_index.PolPSI-AOS | 106, 285 |
| abstract_inverted_index.PolPSI-COH | 98 |
| abstract_inverted_index.Sentinel-1 | 5, 63, 140, 167, 314 |
| abstract_inverted_index.categories | 112 |
| abstract_inverted_index.discussed. | 204 |
| abstract_inverted_index.discussion | 150 |
| abstract_inverted_index.dispersion | 91 |
| abstract_inverted_index.estimation | 230 |
| abstract_inverted_index.monitoring | 52 |
| abstract_inverted_index.persistent | 40 |
| abstract_inverted_index.relatively | 325 |
| abstract_inverted_index.resolution | 312 |
| abstract_inverted_index.scatterers | 275 |
| abstract_inverted_index.technique. | 239 |
| abstract_inverted_index.techniques | 44, 57, 79, 115, 138, 160, 201, 212 |
| abstract_inverted_index.Benefitting | 279 |
| abstract_inverted_index.POlPSI-AOS, | 255 |
| abstract_inverted_index.PolPSI-ADI, | 252 |
| abstract_inverted_index.PolPSI-COH, | 253 |
| abstract_inverted_index.categories. | 86 |
| abstract_inverted_index.categorized | 82 |
| abstract_inverted_index.computation | 295 |
| abstract_inverted_index.deformation | 51, 229 |
| abstract_inverted_index.improvement | 244, 318 |
| abstract_inverted_index.information | 31 |
| abstract_inverted_index.satellites, | 6 |
| abstract_inverted_index.time-series | 13 |
| abstract_inverted_index.conventional | 55, 322 |
| abstract_inverted_index.optimization | 109, 283 |
| abstract_inverted_index.performances | 289 |
| abstract_inverted_index.polarimetric | 39, 72 |
| abstract_inverted_index.strategies). | 110 |
| abstract_inverted_index.Specifically, | 240 |
| abstract_inverted_index.applications. | 303 |
| abstract_inverted_index.deterministic | 274 |
| abstract_inverted_index.performances. | 125, 191 |
| abstract_inverted_index.respectively. | 256 |
| abstract_inverted_index.techniques’ | 190 |
| abstract_inverted_index.PolPSI-COH’s | 317 |
| abstract_inverted_index.insignificant. | 326 |
| abstract_inverted_index.interferometry | 42 |
| abstract_inverted_index.optimizations, | 73 |
| abstract_inverted_index.simultaneously | 130 |
| abstract_inverted_index.characteristics | 153, 198 |
| abstract_inverted_index.interferograms. | 219 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5018788326 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I25757504 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.95764092 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |