Polarization Domain Mapping From 4D-STEM Using Deep Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.00693
Polarization in ferroelectric domains arises from atomic-scale structural variations that govern macroscopic functionalities. The interfaces between these domains known as domain walls host distinct physical responses, making their identification and control critical. Four dimensional scanning transmission electron microscopy (4DSTEM) enables simultaneous acquisition of real and reciprocal-space information at the atomic scale, offering a powerful platform for domain mapping. However, conventional analyses rely on computationally intensive processing and manual interpretation, which are time consuming and prone to misalignment and diffraction artefacts. Here, we present a convolutional neural network that, with minimal training, classifies polarization directions from diffraction data and segments domains in real space. We further introduce an adaptive sampling strategy that prioritizes images from domain wall regions, reducing the number of training images required while improving accuracy and interpretability. We demonstrate this approach for domain mapping in ferroelectric boracite, Cu3B7O13Cl.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2510.00693
- https://arxiv.org/pdf/2510.00693
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414808863
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414808863Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.00693Digital Object Identifier
- Title
-
Polarization Domain Mapping From 4D-STEM Using Deep LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-01Full publication date if available
- Authors
-
F. Hardy, Sinéad M. Griffin, Mariana Palos, Yaqi Li, Geri Topore, Aron Walsh, Michele ConroyList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.00693Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.00693Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.00693Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414808863 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.00693 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.00693 |
| ids.openalex | https://openalex.org/W4414808863 |
| fwci | |
| type | preprint |
| title | Polarization Domain Mapping From 4D-STEM Using Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10857 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.6220999956130981 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1315 |
| topics[0].subfield.display_name | Structural Biology |
| topics[0].display_name | Advanced Electron Microscopy Techniques and Applications |
| topics[1].id | https://openalex.org/T13937 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.6144999861717224 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Genetics, Bioinformatics, and Biomedical Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2510.00693 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.00693 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.00693 |
| locations[1].id | doi:10.48550/arxiv.2510.00693 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.00693 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5109177748 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | F. Hardy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hardy, Fintan G. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5061747978 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9943-4866 |
| authorships[1].author.display_name | Sinéad M. Griffin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Griffin, Sinead M. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5119189462 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Mariana Palos |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Palos, Mariana |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5007759292 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8827-8215 |
| authorships[3].author.display_name | Yaqi Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Yaqi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5105084105 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Geri Topore |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Topore, Geri |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5035797693 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5460-7033 |
| authorships[5].author.display_name | Aron Walsh |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Walsh, Aron |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5060486643 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6658-1819 |
| authorships[6].author.display_name | Michele Conroy |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Conroy, Michele Shelly |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.00693 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Polarization Domain Mapping From 4D-STEM Using Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10857 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.6220999956130981 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1315 |
| primary_topic.subfield.display_name | Structural Biology |
| primary_topic.display_name | Advanced Electron Microscopy Techniques and Applications |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.00693 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.00693 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.00693 |
| primary_location.id | pmh:oai:arXiv.org:2510.00693 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.00693 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.00693 |
| publication_date | 2025-10-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 52, 83 |
| abstract_inverted_index.We | 103, 129 |
| abstract_inverted_index.an | 106 |
| abstract_inverted_index.as | 19 |
| abstract_inverted_index.at | 47 |
| abstract_inverted_index.in | 1, 100, 136 |
| abstract_inverted_index.of | 42, 120 |
| abstract_inverted_index.on | 62 |
| abstract_inverted_index.to | 75 |
| abstract_inverted_index.we | 81 |
| abstract_inverted_index.The | 13 |
| abstract_inverted_index.and | 29, 44, 66, 73, 77, 97, 127 |
| abstract_inverted_index.are | 70 |
| abstract_inverted_index.for | 55, 133 |
| abstract_inverted_index.the | 48, 118 |
| abstract_inverted_index.Four | 32 |
| abstract_inverted_index.data | 96 |
| abstract_inverted_index.from | 5, 94, 113 |
| abstract_inverted_index.host | 22 |
| abstract_inverted_index.real | 43, 101 |
| abstract_inverted_index.rely | 61 |
| abstract_inverted_index.that | 9, 110 |
| abstract_inverted_index.this | 131 |
| abstract_inverted_index.time | 71 |
| abstract_inverted_index.wall | 115 |
| abstract_inverted_index.with | 88 |
| abstract_inverted_index.Here, | 80 |
| abstract_inverted_index.known | 18 |
| abstract_inverted_index.prone | 74 |
| abstract_inverted_index.that, | 87 |
| abstract_inverted_index.their | 27 |
| abstract_inverted_index.these | 16 |
| abstract_inverted_index.walls | 21 |
| abstract_inverted_index.which | 69 |
| abstract_inverted_index.while | 124 |
| abstract_inverted_index.arises | 4 |
| abstract_inverted_index.atomic | 49 |
| abstract_inverted_index.domain | 20, 56, 114, 134 |
| abstract_inverted_index.govern | 10 |
| abstract_inverted_index.images | 112, 122 |
| abstract_inverted_index.making | 26 |
| abstract_inverted_index.manual | 67 |
| abstract_inverted_index.neural | 85 |
| abstract_inverted_index.number | 119 |
| abstract_inverted_index.scale, | 50 |
| abstract_inverted_index.space. | 102 |
| abstract_inverted_index.between | 15 |
| abstract_inverted_index.control | 30 |
| abstract_inverted_index.domains | 3, 17, 99 |
| abstract_inverted_index.enables | 39 |
| abstract_inverted_index.further | 104 |
| abstract_inverted_index.mapping | 135 |
| abstract_inverted_index.minimal | 89 |
| abstract_inverted_index.network | 86 |
| abstract_inverted_index.present | 82 |
| abstract_inverted_index.(4DSTEM) | 38 |
| abstract_inverted_index.However, | 58 |
| abstract_inverted_index.accuracy | 126 |
| abstract_inverted_index.adaptive | 107 |
| abstract_inverted_index.analyses | 60 |
| abstract_inverted_index.approach | 132 |
| abstract_inverted_index.distinct | 23 |
| abstract_inverted_index.electron | 36 |
| abstract_inverted_index.mapping. | 57 |
| abstract_inverted_index.offering | 51 |
| abstract_inverted_index.physical | 24 |
| abstract_inverted_index.platform | 54 |
| abstract_inverted_index.powerful | 53 |
| abstract_inverted_index.reducing | 117 |
| abstract_inverted_index.regions, | 116 |
| abstract_inverted_index.required | 123 |
| abstract_inverted_index.sampling | 108 |
| abstract_inverted_index.scanning | 34 |
| abstract_inverted_index.segments | 98 |
| abstract_inverted_index.strategy | 109 |
| abstract_inverted_index.training | 121 |
| abstract_inverted_index.boracite, | 138 |
| abstract_inverted_index.consuming | 72 |
| abstract_inverted_index.critical. | 31 |
| abstract_inverted_index.improving | 125 |
| abstract_inverted_index.intensive | 64 |
| abstract_inverted_index.introduce | 105 |
| abstract_inverted_index.training, | 90 |
| abstract_inverted_index.artefacts. | 79 |
| abstract_inverted_index.classifies | 91 |
| abstract_inverted_index.directions | 93 |
| abstract_inverted_index.interfaces | 14 |
| abstract_inverted_index.microscopy | 37 |
| abstract_inverted_index.processing | 65 |
| abstract_inverted_index.responses, | 25 |
| abstract_inverted_index.structural | 7 |
| abstract_inverted_index.variations | 8 |
| abstract_inverted_index.Cu3B7O13Cl. | 139 |
| abstract_inverted_index.acquisition | 41 |
| abstract_inverted_index.demonstrate | 130 |
| abstract_inverted_index.diffraction | 78, 95 |
| abstract_inverted_index.dimensional | 33 |
| abstract_inverted_index.information | 46 |
| abstract_inverted_index.macroscopic | 11 |
| abstract_inverted_index.prioritizes | 111 |
| abstract_inverted_index.Polarization | 0 |
| abstract_inverted_index.atomic-scale | 6 |
| abstract_inverted_index.conventional | 59 |
| abstract_inverted_index.misalignment | 76 |
| abstract_inverted_index.polarization | 92 |
| abstract_inverted_index.simultaneous | 40 |
| abstract_inverted_index.transmission | 35 |
| abstract_inverted_index.convolutional | 84 |
| abstract_inverted_index.ferroelectric | 2, 137 |
| abstract_inverted_index.identification | 28 |
| abstract_inverted_index.computationally | 63 |
| abstract_inverted_index.interpretation, | 68 |
| abstract_inverted_index.functionalities. | 12 |
| abstract_inverted_index.reciprocal-space | 45 |
| abstract_inverted_index.interpretability. | 128 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |