Polynomial Fuzzy Information Granule-Based Time Series Prediction Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/math10234495
Fuzzy information granulation transfers the time series analysis from the numerical platform to the granular platform, which enables us to study the time series at a different granularity. In previous studies, each fuzzy information granule in a granular time series can reflect the average, range, and linear trend characteristics of the data in the corresponding time window. In order to get a more general information granule, this paper proposes polynomial fuzzy information granules, each of which can reflect both the linear trend and the nonlinear trend of the data in a time window. The distance metric of the proposed information granules is given theoretically. After studying the distance measure of the polynomial fuzzy information granule and its geometric interpretation, we design a time series prediction method based on the polynomial fuzzy information granules and fuzzy inference system. The experimental results show that the proposed prediction method can achieve a good long-term prediction.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/math10234495
- https://www.mdpi.com/2227-7390/10/23/4495/pdf?version=1669687448
- OA Status
- gold
- Cited By
- 7
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4310206888
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4310206888Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/math10234495Digital Object Identifier
- Title
-
Polynomial Fuzzy Information Granule-Based Time Series PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-28Full publication date if available
- Authors
-
Xiyang Yang, Shiqing Zhang, Xinjun Zhang, Fusheng YuList of authors in order
- Landing page
-
https://doi.org/10.3390/math10234495Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-7390/10/23/4495/pdf?version=1669687448Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-7390/10/23/4495/pdf?version=1669687448Direct OA link when available
- Concepts
-
Granular computing, Mathematics, Fuzzy logic, Time series, Polynomial, Fuzzy number, Algorithm, Data mining, Computer science, Fuzzy set, Artificial intelligence, Statistics, Mathematical analysis, Rough setTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4310206888 |
|---|---|
| doi | https://doi.org/10.3390/math10234495 |
| ids.doi | https://doi.org/10.3390/math10234495 |
| ids.openalex | https://openalex.org/W4310206888 |
| fwci | 1.364701 |
| type | article |
| title | Polynomial Fuzzy Information Granule-Based Time Series Prediction |
| awards[0].id | https://openalex.org/G1562393198 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 11971065 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 23 |
| biblio.volume | 10 |
| biblio.last_page | 4495 |
| biblio.first_page | 4495 |
| topics[0].id | https://openalex.org/T12205 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9933000206947327 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Time Series Analysis and Forecasting |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9882000088691711 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T11063 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9882000088691711 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Rough Sets and Fuzzy Logic |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C17209119 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5842728018760681 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5596712 |
| concepts[0].display_name | Granular computing |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5807110667228699 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C58166 |
| concepts[2].level | 2 |
| concepts[2].score | 0.569782018661499 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[2].display_name | Fuzzy logic |
| concepts[3].id | https://openalex.org/C151406439 |
| concepts[3].level | 2 |
| concepts[3].score | 0.45709505677223206 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[3].display_name | Time series |
| concepts[4].id | https://openalex.org/C90119067 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44687891006469727 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q43260 |
| concepts[4].display_name | Polynomial |
| concepts[5].id | https://openalex.org/C1883856 |
| concepts[5].level | 4 |
| concepts[5].score | 0.4417884945869446 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3407463 |
| concepts[5].display_name | Fuzzy number |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4237311780452728 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38579288125038147 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3811435401439667 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C42011625 |
| concepts[9].level | 3 |
| concepts[9].score | 0.2823687493801117 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1055058 |
| concepts[9].display_name | Fuzzy set |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2261224389076233 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.13592445850372314 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C134306372 |
| concepts[12].level | 1 |
| concepts[12].score | 0.06417626142501831 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[12].display_name | Mathematical analysis |
| concepts[13].id | https://openalex.org/C111012933 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3137210 |
| concepts[13].display_name | Rough set |
| keywords[0].id | https://openalex.org/keywords/granular-computing |
| keywords[0].score | 0.5842728018760681 |
| keywords[0].display_name | Granular computing |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.5807110667228699 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[2].score | 0.569782018661499 |
| keywords[2].display_name | Fuzzy logic |
| keywords[3].id | https://openalex.org/keywords/time-series |
| keywords[3].score | 0.45709505677223206 |
| keywords[3].display_name | Time series |
| keywords[4].id | https://openalex.org/keywords/polynomial |
| keywords[4].score | 0.44687891006469727 |
| keywords[4].display_name | Polynomial |
| keywords[5].id | https://openalex.org/keywords/fuzzy-number |
| keywords[5].score | 0.4417884945869446 |
| keywords[5].display_name | Fuzzy number |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.4237311780452728 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.38579288125038147 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.3811435401439667 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/fuzzy-set |
| keywords[9].score | 0.2823687493801117 |
| keywords[9].display_name | Fuzzy set |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.2261224389076233 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.13592445850372314 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[12].score | 0.06417626142501831 |
| keywords[12].display_name | Mathematical analysis |
| language | en |
| locations[0].id | doi:10.3390/math10234495 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210192031 |
| locations[0].source.issn | 2227-7390 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-7390 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-7390/10/23/4495/pdf?version=1669687448 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3390/math10234495 |
| locations[1].id | pmh:oai:doaj.org/article:321aa5385d4c4e92a3047f939d11d99d |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematics, Vol 10, Iss 23, p 4495 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/321aa5385d4c4e92a3047f939d11d99d |
| locations[2].id | pmh:oai:mdpi.com:/2227-7390/10/23/4495/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Pages: 4495 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/math10234495 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5056718487 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9790-8992 |
| authorships[0].author.display_name | Xiyang Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25254941 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mathematical Science, Beijing Normal University, Beijing 100875, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I169019527 |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory of Intelligent Computing and Information Processing, Quanzhou Normal University, Quanzhou 362000, China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I169019527 |
| authorships[0].affiliations[2].raw_affiliation_string | Fujian Provincial Key Laboratory of Data-Intensive Computing, Quanzhou Normal University, Quanzhou 362000, China |
| authorships[0].affiliations[3].institution_ids | https://openalex.org/I64449678 |
| authorships[0].affiliations[3].raw_affiliation_string | Fujian Key Laboratory of Financial Information Processing, Putian University, Putian 351100, China |
| authorships[0].affiliations[4].institution_ids | https://openalex.org/I169019527 |
| authorships[0].affiliations[4].raw_affiliation_string | Fujian Big Data Research Institute of Intelligent Manufacturing, Quanzhou Normal University, Quanzhou 362000, China |
| authorships[0].institutions[0].id | https://openalex.org/I25254941 |
| authorships[0].institutions[0].ror | https://ror.org/022k4wk35 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25254941 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Normal University |
| authorships[0].institutions[1].id | https://openalex.org/I64449678 |
| authorships[0].institutions[1].ror | https://ror.org/00jmsxk74 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I64449678 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Putian University |
| authorships[0].institutions[2].id | https://openalex.org/I169019527 |
| authorships[0].institutions[2].ror | https://ror.org/006ak0b38 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I169019527 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | Quanzhou Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiyang Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Fujian Big Data Research Institute of Intelligent Manufacturing, Quanzhou Normal University, Quanzhou 362000, China, Fujian Key Laboratory of Financial Information Processing, Putian University, Putian 351100, China, Fujian Provincial Key Laboratory of Data-Intensive Computing, Quanzhou Normal University, Quanzhou 362000, China, Key Laboratory of Intelligent Computing and Information Processing, Quanzhou Normal University, Quanzhou 362000, China, School of Mathematical Science, Beijing Normal University, Beijing 100875, China |
| authorships[1].author.id | https://openalex.org/A5101891026 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6690-3718 |
| authorships[1].author.display_name | Shiqing Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I169019527 |
| authorships[1].affiliations[0].raw_affiliation_string | Fujian Provincial Key Laboratory of Data-Intensive Computing, Quanzhou Normal University, Quanzhou 362000, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I169019527 |
| authorships[1].affiliations[1].raw_affiliation_string | Key Laboratory of Intelligent Computing and Information Processing, Quanzhou Normal University, Quanzhou 362000, China |
| authorships[1].institutions[0].id | https://openalex.org/I169019527 |
| authorships[1].institutions[0].ror | https://ror.org/006ak0b38 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I169019527 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Quanzhou Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shiqing Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Fujian Provincial Key Laboratory of Data-Intensive Computing, Quanzhou Normal University, Quanzhou 362000, China, Key Laboratory of Intelligent Computing and Information Processing, Quanzhou Normal University, Quanzhou 362000, China |
| authorships[2].author.id | https://openalex.org/A5005462634 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2409-4104 |
| authorships[2].author.display_name | Xinjun Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I64449678 |
| authorships[2].affiliations[0].raw_affiliation_string | Fujian Key Laboratory of Financial Information Processing, Putian University, Putian 351100, China |
| authorships[2].institutions[0].id | https://openalex.org/I64449678 |
| authorships[2].institutions[0].ror | https://ror.org/00jmsxk74 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I64449678 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Putian University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinjun Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Fujian Key Laboratory of Financial Information Processing, Putian University, Putian 351100, China |
| authorships[3].author.id | https://openalex.org/A5075869337 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Fusheng Yu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I25254941 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Mathematical Science, Beijing Normal University, Beijing 100875, China |
| authorships[3].institutions[0].id | https://openalex.org/I25254941 |
| authorships[3].institutions[0].ror | https://ror.org/022k4wk35 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I25254941 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Normal University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Fusheng Yu |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | School of Mathematical Science, Beijing Normal University, Beijing 100875, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-7390/10/23/4495/pdf?version=1669687448 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Polynomial Fuzzy Information Granule-Based Time Series Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12205 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9933000206947327 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Time Series Analysis and Forecasting |
| related_works | https://openalex.org/W2350522004, https://openalex.org/W2370755174, https://openalex.org/W2377101006, https://openalex.org/W2187139637, https://openalex.org/W2350247864, https://openalex.org/W3013364385, https://openalex.org/W2112263672, https://openalex.org/W1795409297, https://openalex.org/W4299125407, https://openalex.org/W2541537839 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/math10234495 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210192031 |
| best_oa_location.source.issn | 2227-7390 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-7390 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-7390/10/23/4495/pdf?version=1669687448 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/math10234495 |
| primary_location.id | doi:10.3390/math10234495 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210192031 |
| primary_location.source.issn | 2227-7390 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-7390 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-7390/10/23/4495/pdf?version=1669687448 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3390/math10234495 |
| publication_date | 2022-11-28 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3174082714, https://openalex.org/W2919469173, https://openalex.org/W3113360783, https://openalex.org/W4254841512, https://openalex.org/W3127830124, https://openalex.org/W4303628746, https://openalex.org/W2311533087, https://openalex.org/W3115452202, https://openalex.org/W2970658101, https://openalex.org/W3126881694, https://openalex.org/W3017116930, https://openalex.org/W21860402, https://openalex.org/W3004608407, https://openalex.org/W3134585217, https://openalex.org/W4213218565, https://openalex.org/W2157423047, https://openalex.org/W3175239188, https://openalex.org/W2101778643, https://openalex.org/W3198866269, https://openalex.org/W4288081107, https://openalex.org/W4294845633, https://openalex.org/W1994785384, https://openalex.org/W2316020619, https://openalex.org/W2550257869, https://openalex.org/W2980762031, https://openalex.org/W2997687596, https://openalex.org/W4211007335, https://openalex.org/W3135562591, https://openalex.org/W2103404435, https://openalex.org/W1515119244, https://openalex.org/W4238912899, https://openalex.org/W6677656871, https://openalex.org/W2118585731 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 25, 36, 61, 90, 121, 148 |
| abstract_inverted_index.In | 28, 57 |
| abstract_inverted_index.at | 24 |
| abstract_inverted_index.in | 35, 52, 89 |
| abstract_inverted_index.is | 101 |
| abstract_inverted_index.of | 49, 74, 86, 96, 109 |
| abstract_inverted_index.on | 127 |
| abstract_inverted_index.to | 12, 19, 59 |
| abstract_inverted_index.us | 18 |
| abstract_inverted_index.we | 119 |
| abstract_inverted_index.The | 93, 137 |
| abstract_inverted_index.and | 45, 82, 115, 133 |
| abstract_inverted_index.can | 40, 76, 146 |
| abstract_inverted_index.get | 60 |
| abstract_inverted_index.its | 116 |
| abstract_inverted_index.the | 4, 9, 13, 21, 42, 50, 53, 79, 83, 87, 97, 106, 110, 128, 142 |
| abstract_inverted_index.both | 78 |
| abstract_inverted_index.data | 51, 88 |
| abstract_inverted_index.each | 31, 73 |
| abstract_inverted_index.from | 8 |
| abstract_inverted_index.good | 149 |
| abstract_inverted_index.more | 62 |
| abstract_inverted_index.show | 140 |
| abstract_inverted_index.that | 141 |
| abstract_inverted_index.this | 66 |
| abstract_inverted_index.time | 5, 22, 38, 55, 91, 122 |
| abstract_inverted_index.After | 104 |
| abstract_inverted_index.Fuzzy | 0 |
| abstract_inverted_index.based | 126 |
| abstract_inverted_index.fuzzy | 32, 70, 112, 130, 134 |
| abstract_inverted_index.given | 102 |
| abstract_inverted_index.order | 58 |
| abstract_inverted_index.paper | 67 |
| abstract_inverted_index.study | 20 |
| abstract_inverted_index.trend | 47, 81, 85 |
| abstract_inverted_index.which | 16, 75 |
| abstract_inverted_index.design | 120 |
| abstract_inverted_index.linear | 46, 80 |
| abstract_inverted_index.method | 125, 145 |
| abstract_inverted_index.metric | 95 |
| abstract_inverted_index.range, | 44 |
| abstract_inverted_index.series | 6, 23, 39, 123 |
| abstract_inverted_index.achieve | 147 |
| abstract_inverted_index.enables | 17 |
| abstract_inverted_index.general | 63 |
| abstract_inverted_index.granule | 34, 114 |
| abstract_inverted_index.measure | 108 |
| abstract_inverted_index.reflect | 41, 77 |
| abstract_inverted_index.results | 139 |
| abstract_inverted_index.system. | 136 |
| abstract_inverted_index.window. | 56, 92 |
| abstract_inverted_index.analysis | 7 |
| abstract_inverted_index.average, | 43 |
| abstract_inverted_index.distance | 94, 107 |
| abstract_inverted_index.granular | 14, 37 |
| abstract_inverted_index.granule, | 65 |
| abstract_inverted_index.granules | 100, 132 |
| abstract_inverted_index.platform | 11 |
| abstract_inverted_index.previous | 29 |
| abstract_inverted_index.proposed | 98, 143 |
| abstract_inverted_index.proposes | 68 |
| abstract_inverted_index.studies, | 30 |
| abstract_inverted_index.studying | 105 |
| abstract_inverted_index.different | 26 |
| abstract_inverted_index.geometric | 117 |
| abstract_inverted_index.granules, | 72 |
| abstract_inverted_index.inference | 135 |
| abstract_inverted_index.long-term | 150 |
| abstract_inverted_index.nonlinear | 84 |
| abstract_inverted_index.numerical | 10 |
| abstract_inverted_index.platform, | 15 |
| abstract_inverted_index.transfers | 3 |
| abstract_inverted_index.polynomial | 69, 111, 129 |
| abstract_inverted_index.prediction | 124, 144 |
| abstract_inverted_index.granulation | 2 |
| abstract_inverted_index.information | 1, 33, 64, 71, 99, 113, 131 |
| abstract_inverted_index.prediction. | 151 |
| abstract_inverted_index.experimental | 138 |
| abstract_inverted_index.granularity. | 27 |
| abstract_inverted_index.corresponding | 54 |
| abstract_inverted_index.theoretically. | 103 |
| abstract_inverted_index.characteristics | 48 |
| abstract_inverted_index.interpretation, | 118 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5075869337 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I25254941 |
| citation_normalized_percentile.value | 0.77748344 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |