Positive matrix factorization of large real-time atmospheric mass spectrometry datasets using error-weighted randomized hierarchical alternating least squares Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5194/gmd-18-2891-2025
Weighted positive matrix factorization (PMF) has been used by scientists to find small sets of underlying factors in environmental data. However, as the size of the data has grown, increasing computational costs have made it impractical to use traditional methods for this factorization. In this paper, we present a new external weighting method to dramatically decrease computational costs for these traditional algorithms. The external weighting scheme, along with the randomized hierarchical alternating least squares (RHALS) algorithm, was applied to the Southern Oxidant and Aerosol Study (SOAS 2013) dataset of gaseous highly oxidized multifunctional molecules (HOMs). The modified RHALS algorithm successfully reproduced six previously identified interpretable factors, with the total computation time of the nonoptimized code showing potential improvements of the order of 1 to 2 orders of magnitude compared to competing algorithms. We also investigate rotational ambiguity in the solution and present a simple “pulling” method to rotate a set of factors. This method is shown to find alternative solutions and, in some cases, lower the weighted residual error of the algorithm.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/gmd-18-2891-2025
- https://gmd.copernicus.org/articles/18/2891/2025/gmd-18-2891-2025.pdf
- OA Status
- gold
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410508735
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410508735Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/gmd-18-2891-2025Digital Object Identifier
- Title
-
Positive matrix factorization of large real-time atmospheric mass spectrometry datasets using error-weighted randomized hierarchical alternating least squaresWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-19Full publication date if available
- Authors
-
Benjamin Sapper, S. W. Youn, Daven K. Henze, Manjula R. Canagaratna, Harald Stark, J. L. JiménezList of authors in order
- Landing page
-
https://doi.org/10.5194/gmd-18-2891-2025Publisher landing page
- PDF URL
-
https://gmd.copernicus.org/articles/18/2891/2025/gmd-18-2891-2025.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://gmd.copernicus.org/articles/18/2891/2025/gmd-18-2891-2025.pdfDirect OA link when available
- Concepts
-
Matrix (chemical analysis), Factorization, Mass spectrometry, Mathematics, Statistics, Computer science, Algorithm, Chemistry, ChromatographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410508735 |
|---|---|
| doi | https://doi.org/10.5194/gmd-18-2891-2025 |
| ids.doi | https://doi.org/10.5194/gmd-18-2891-2025 |
| ids.openalex | https://openalex.org/W4410508735 |
| fwci | 0.0 |
| type | article |
| title | Positive matrix factorization of large real-time atmospheric mass spectrometry datasets using error-weighted randomized hierarchical alternating least squares |
| awards[0].id | https://openalex.org/G7381555632 |
| awards[0].funder_id | https://openalex.org/F4320306101 |
| awards[0].display_name | |
| awards[0].funder_award_id | 80NSSC20K0214 |
| awards[0].funder_display_name | National Aeronautics and Space Administration |
| awards[1].id | https://openalex.org/G3967446909 |
| awards[1].funder_id | https://openalex.org/F4320332538 |
| awards[1].display_name | |
| awards[1].funder_award_id | CU Summer Program for Undergraduate Research (SPUR) |
| awards[1].funder_display_name | University of Colorado Boulder |
| biblio.issue | 10 |
| biblio.volume | 18 |
| biblio.last_page | 2919 |
| biblio.first_page | 2891 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9940000176429749 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9670000076293945 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T10111 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9638000130653381 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2303 |
| topics[2].subfield.display_name | Ecology |
| topics[2].display_name | Remote Sensing in Agriculture |
| funders[0].id | https://openalex.org/F4320306101 |
| funders[0].ror | https://ror.org/027ka1x80 |
| funders[0].display_name | National Aeronautics and Space Administration |
| funders[1].id | https://openalex.org/F4320332538 |
| funders[1].ror | https://ror.org/02ttsq026 |
| funders[1].display_name | University of Colorado Boulder |
| is_xpac | False |
| apc_list.value | 1600 |
| apc_list.currency | EUR |
| apc_list.value_usd | 1725 |
| apc_paid.value | 1600 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 1725 |
| concepts[0].id | https://openalex.org/C106487976 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5410643219947815 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[0].display_name | Matrix (chemical analysis) |
| concepts[1].id | https://openalex.org/C187834632 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5020761489868164 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188804 |
| concepts[1].display_name | Factorization |
| concepts[2].id | https://openalex.org/C162356407 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4848869740962982 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q180809 |
| concepts[2].display_name | Mass spectrometry |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.40788954496383667 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3811538815498352 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3658360540866852 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3627568781375885 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C185592680 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3615707755088806 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[7].display_name | Chemistry |
| concepts[8].id | https://openalex.org/C43617362 |
| concepts[8].level | 1 |
| concepts[8].score | 0.20868653059005737 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[8].display_name | Chromatography |
| keywords[0].id | https://openalex.org/keywords/matrix |
| keywords[0].score | 0.5410643219947815 |
| keywords[0].display_name | Matrix (chemical analysis) |
| keywords[1].id | https://openalex.org/keywords/factorization |
| keywords[1].score | 0.5020761489868164 |
| keywords[1].display_name | Factorization |
| keywords[2].id | https://openalex.org/keywords/mass-spectrometry |
| keywords[2].score | 0.4848869740962982 |
| keywords[2].display_name | Mass spectrometry |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.40788954496383667 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.3811538815498352 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3658360540866852 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.3627568781375885 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/chemistry |
| keywords[7].score | 0.3615707755088806 |
| keywords[7].display_name | Chemistry |
| keywords[8].id | https://openalex.org/keywords/chromatography |
| keywords[8].score | 0.20868653059005737 |
| keywords[8].display_name | Chromatography |
| language | en |
| locations[0].id | doi:10.5194/gmd-18-2891-2025 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S60406085 |
| locations[0].source.issn | 1991-959X, 1991-9603 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1991-959X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Geoscientific model development |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://gmd.copernicus.org/articles/18/2891/2025/gmd-18-2891-2025.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Geoscientific Model Development |
| locations[0].landing_page_url | https://doi.org/10.5194/gmd-18-2891-2025 |
| locations[1].id | pmh:oai:doaj.org/article:a23c381012af4709bac23665cc3069b2 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Geoscientific Model Development, Vol 18, Pp 2891-2919 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/a23c381012af4709bac23665cc3069b2 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5058781247 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Benjamin Sapper |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Benjamin C. Sapper |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5113915560 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | S. W. Youn |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sean Youn |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5058462310 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6431-4963 |
| authorships[2].author.display_name | Daven K. Henze |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Daven K. Henze |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5062166400 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8803-4007 |
| authorships[3].author.display_name | Manjula R. Canagaratna |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Manjula Canagaratna |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5088131620 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0731-1202 |
| authorships[4].author.display_name | Harald Stark |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Harald Stark |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5081595136 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6203-1847 |
| authorships[5].author.display_name | J. L. Jiménez |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jose L. Jimenez |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://gmd.copernicus.org/articles/18/2891/2025/gmd-18-2891-2025.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Positive matrix factorization of large real-time atmospheric mass spectrometry datasets using error-weighted randomized hierarchical alternating least squares |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9940000176429749 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2051487156, https://openalex.org/W2073681303, https://openalex.org/W4409439182, https://openalex.org/W2794559785, https://openalex.org/W1754499339, https://openalex.org/W2013873776, https://openalex.org/W2053286651, https://openalex.org/W2950281908, https://openalex.org/W2963117165, https://openalex.org/W2181743346 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5194/gmd-18-2891-2025 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S60406085 |
| best_oa_location.source.issn | 1991-959X, 1991-9603 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1991-959X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Geoscientific model development |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://gmd.copernicus.org/articles/18/2891/2025/gmd-18-2891-2025.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Geoscientific Model Development |
| best_oa_location.landing_page_url | https://doi.org/10.5194/gmd-18-2891-2025 |
| primary_location.id | doi:10.5194/gmd-18-2891-2025 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S60406085 |
| primary_location.source.issn | 1991-959X, 1991-9603 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1991-959X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Geoscientific model development |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://gmd.copernicus.org/articles/18/2891/2025/gmd-18-2891-2025.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Geoscientific Model Development |
| primary_location.landing_page_url | https://doi.org/10.5194/gmd-18-2891-2025 |
| publication_date | 2025-05-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2152175008, https://openalex.org/W2015583498, https://openalex.org/W2026034143, https://openalex.org/W1594902260, https://openalex.org/W2004026774, https://openalex.org/W2768089427, https://openalex.org/W2896222781, https://openalex.org/W2077430220, https://openalex.org/W3114089334, https://openalex.org/W4393058164, https://openalex.org/W2117756735, https://openalex.org/W1968735445, https://openalex.org/W4381480691, https://openalex.org/W1969698720, https://openalex.org/W3008378296, https://openalex.org/W2947946584, https://openalex.org/W1530505367, https://openalex.org/W2093492509, https://openalex.org/W2750600689, https://openalex.org/W2105812312, https://openalex.org/W1902027874, https://openalex.org/W2110096996, https://openalex.org/W2106661179, https://openalex.org/W2799512284, https://openalex.org/W4390548120, https://openalex.org/W2056857971, https://openalex.org/W2157262115, https://openalex.org/W2012470056, https://openalex.org/W2059745395, https://openalex.org/W2085936845, https://openalex.org/W2072095284, https://openalex.org/W6950616427, https://openalex.org/W2168230675, https://openalex.org/W2885998509, https://openalex.org/W2168143240, https://openalex.org/W2267447069, https://openalex.org/W2085148302, https://openalex.org/W2983099779, https://openalex.org/W3163660449, https://openalex.org/W1479822238, https://openalex.org/W4407020051 |
| referenced_works_count | 41 |
| abstract_inverted_index.1 | 123 |
| abstract_inverted_index.2 | 125 |
| abstract_inverted_index.a | 49, 143, 149 |
| abstract_inverted_index.In | 44 |
| abstract_inverted_index.We | 133 |
| abstract_inverted_index.as | 22 |
| abstract_inverted_index.by | 9 |
| abstract_inverted_index.in | 18, 138, 162 |
| abstract_inverted_index.is | 155 |
| abstract_inverted_index.it | 35 |
| abstract_inverted_index.of | 15, 25, 89, 112, 119, 122, 127, 151, 170 |
| abstract_inverted_index.to | 11, 37, 54, 79, 124, 130, 147, 157 |
| abstract_inverted_index.we | 47 |
| abstract_inverted_index.The | 63, 96 |
| abstract_inverted_index.and | 83, 141 |
| abstract_inverted_index.for | 41, 59 |
| abstract_inverted_index.has | 6, 28 |
| abstract_inverted_index.new | 50 |
| abstract_inverted_index.set | 150 |
| abstract_inverted_index.six | 102 |
| abstract_inverted_index.the | 23, 26, 69, 80, 108, 113, 120, 139, 166, 171 |
| abstract_inverted_index.use | 38 |
| abstract_inverted_index.was | 77 |
| abstract_inverted_index.This | 153 |
| abstract_inverted_index.also | 134 |
| abstract_inverted_index.and, | 161 |
| abstract_inverted_index.been | 7 |
| abstract_inverted_index.code | 115 |
| abstract_inverted_index.data | 27 |
| abstract_inverted_index.find | 12, 158 |
| abstract_inverted_index.have | 33 |
| abstract_inverted_index.made | 34 |
| abstract_inverted_index.sets | 14 |
| abstract_inverted_index.size | 24 |
| abstract_inverted_index.some | 163 |
| abstract_inverted_index.this | 42, 45 |
| abstract_inverted_index.time | 111 |
| abstract_inverted_index.used | 8 |
| abstract_inverted_index.with | 68, 107 |
| abstract_inverted_index.(PMF) | 5 |
| abstract_inverted_index.(SOAS | 86 |
| abstract_inverted_index.2013) | 87 |
| abstract_inverted_index.RHALS | 98 |
| abstract_inverted_index.Study | 85 |
| abstract_inverted_index.along | 67 |
| abstract_inverted_index.costs | 32, 58 |
| abstract_inverted_index.data. | 20 |
| abstract_inverted_index.error | 169 |
| abstract_inverted_index.least | 73 |
| abstract_inverted_index.lower | 165 |
| abstract_inverted_index.order | 121 |
| abstract_inverted_index.shown | 156 |
| abstract_inverted_index.small | 13 |
| abstract_inverted_index.these | 60 |
| abstract_inverted_index.total | 109 |
| abstract_inverted_index.cases, | 164 |
| abstract_inverted_index.grown, | 29 |
| abstract_inverted_index.highly | 91 |
| abstract_inverted_index.matrix | 3 |
| abstract_inverted_index.method | 53, 146, 154 |
| abstract_inverted_index.orders | 126 |
| abstract_inverted_index.paper, | 46 |
| abstract_inverted_index.rotate | 148 |
| abstract_inverted_index.simple | 144 |
| abstract_inverted_index.(HOMs). | 95 |
| abstract_inverted_index.(RHALS) | 75 |
| abstract_inverted_index.Aerosol | 84 |
| abstract_inverted_index.Oxidant | 82 |
| abstract_inverted_index.applied | 78 |
| abstract_inverted_index.dataset | 88 |
| abstract_inverted_index.factors | 17 |
| abstract_inverted_index.gaseous | 90 |
| abstract_inverted_index.methods | 40 |
| abstract_inverted_index.present | 48, 142 |
| abstract_inverted_index.scheme, | 66 |
| abstract_inverted_index.showing | 116 |
| abstract_inverted_index.squares | 74 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.Southern | 81 |
| abstract_inverted_index.Weighted | 1 |
| abstract_inverted_index.compared | 129 |
| abstract_inverted_index.decrease | 56 |
| abstract_inverted_index.external | 51, 64 |
| abstract_inverted_index.factors, | 106 |
| abstract_inverted_index.factors. | 152 |
| abstract_inverted_index.modified | 97 |
| abstract_inverted_index.oxidized | 92 |
| abstract_inverted_index.positive | 2 |
| abstract_inverted_index.residual | 168 |
| abstract_inverted_index.solution | 140 |
| abstract_inverted_index.weighted | 167 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.algorithm | 99 |
| abstract_inverted_index.ambiguity | 137 |
| abstract_inverted_index.competing | 131 |
| abstract_inverted_index.magnitude | 128 |
| abstract_inverted_index.molecules | 94 |
| abstract_inverted_index.potential | 117 |
| abstract_inverted_index.solutions | 160 |
| abstract_inverted_index.weighting | 52, 65 |
| abstract_inverted_index.algorithm, | 76 |
| abstract_inverted_index.algorithm. | 172 |
| abstract_inverted_index.identified | 104 |
| abstract_inverted_index.increasing | 30 |
| abstract_inverted_index.previously | 103 |
| abstract_inverted_index.randomized | 70 |
| abstract_inverted_index.reproduced | 101 |
| abstract_inverted_index.rotational | 136 |
| abstract_inverted_index.scientists | 10 |
| abstract_inverted_index.underlying | 16 |
| abstract_inverted_index.algorithms. | 62, 132 |
| abstract_inverted_index.alternating | 72 |
| abstract_inverted_index.alternative | 159 |
| abstract_inverted_index.computation | 110 |
| abstract_inverted_index.impractical | 36 |
| abstract_inverted_index.investigate | 135 |
| abstract_inverted_index.traditional | 39, 61 |
| abstract_inverted_index.dramatically | 55 |
| abstract_inverted_index.hierarchical | 71 |
| abstract_inverted_index.improvements | 118 |
| abstract_inverted_index.nonoptimized | 114 |
| abstract_inverted_index.successfully | 100 |
| abstract_inverted_index.computational | 31, 57 |
| abstract_inverted_index.environmental | 19 |
| abstract_inverted_index.factorization | 4 |
| abstract_inverted_index.interpretable | 105 |
| abstract_inverted_index.“pulling” | 145 |
| abstract_inverted_index.factorization. | 43 |
| abstract_inverted_index.multifunctional | 93 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.2375339 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |