Potentially nilpotent tridiagonal sign patterns of order 4 Article Swipe
Yubin Gao
,
Yanling Shao
·
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.13001/1081-3810.3075
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.13001/1081-3810.3075
An $n\times n$ sign pattern ${\cal A}$ is said to be potentially nilpotent (PN) if there exists some nilpotent real matrix $B$ with sign pattern ${\cal A}$. In [M.~Arav, F.~Hall, Z.~Li, K.~Kaphle, and N.~Manzagol.Spectrally arbitrary tree sign patterns of order $4$, {\em Electronic Journal of Linear Algebra}, 20:180--197, 2010.], the authors gave some open questions, and one of them is the following: {\em For the class of $4 \times 4$ tridiagonal sign patterns, is PN (together with positive and negative diagonal entries) equivalent to being SAP?}\ In this paper, a positive answer for this question is given.
Related Topics
Concepts
Tridiagonal matrix
Sign (mathematics)
Mathematics
Nilpotent
Diagonal
Nilpotent matrix
Nilpotent group
Order (exchange)
Combinatorics
Pure mathematics
Class (philosophy)
Linear algebra
Matrix (chemical analysis)
Algebra over a field
Discrete mathematics
Eigenvalues and eigenvectors
Square matrix
Mathematical analysis
Geometry
Symmetric matrix
Physics
Quantum mechanics
Computer science
Materials science
Finance
Economics
Composite material
Artificial intelligence
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.13001/1081-3810.3075
- OA Status
- diamond
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2559171204
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2559171204Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.13001/1081-3810.3075Digital Object Identifier
- Title
-
Potentially nilpotent tridiagonal sign patterns of order 4Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-02-05Full publication date if available
- Authors
-
Yubin Gao, Yanling ShaoList of authors in order
- Landing page
-
https://doi.org/10.13001/1081-3810.3075Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.13001/1081-3810.3075Direct OA link when available
- Concepts
-
Tridiagonal matrix, Sign (mathematics), Mathematics, Nilpotent, Diagonal, Nilpotent matrix, Nilpotent group, Order (exchange), Combinatorics, Pure mathematics, Class (philosophy), Linear algebra, Matrix (chemical analysis), Algebra over a field, Discrete mathematics, Eigenvalues and eigenvectors, Square matrix, Mathematical analysis, Geometry, Symmetric matrix, Physics, Quantum mechanics, Computer science, Materials science, Finance, Economics, Composite material, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2020: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2559171204 |
|---|---|
| doi | https://doi.org/10.13001/1081-3810.3075 |
| ids.doi | https://doi.org/10.13001/1081-3810.3075 |
| ids.mag | 2559171204 |
| ids.openalex | https://openalex.org/W2559171204 |
| fwci | 0.0 |
| type | article |
| title | Potentially nilpotent tridiagonal sign patterns of order 4 |
| biblio.issue | |
| biblio.volume | 31 |
| biblio.last_page | 721 |
| biblio.first_page | 706 |
| topics[0].id | https://openalex.org/T10792 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Matrix Theory and Algorithms |
| topics[1].id | https://openalex.org/T11673 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9968000054359436 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2602 |
| topics[1].subfield.display_name | Algebra and Number Theory |
| topics[1].display_name | Advanced Topics in Algebra |
| topics[2].id | https://openalex.org/T10849 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9940000176429749 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2607 |
| topics[2].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[2].display_name | Finite Group Theory Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C51647924 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9216812252998352 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1755277 |
| concepts[0].display_name | Tridiagonal matrix |
| concepts[1].id | https://openalex.org/C139676723 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8573514223098755 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1193832 |
| concepts[1].display_name | Sign (mathematics) |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.8409523367881775 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C50555996 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7858613133430481 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q840023 |
| concepts[3].display_name | Nilpotent |
| concepts[4].id | https://openalex.org/C130367717 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6550351977348328 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q189791 |
| concepts[4].display_name | Diagonal |
| concepts[5].id | https://openalex.org/C27563320 |
| concepts[5].level | 5 |
| concepts[5].score | 0.5859861969947815 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q650670 |
| concepts[5].display_name | Nilpotent matrix |
| concepts[6].id | https://openalex.org/C206219070 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5614282488822937 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1755242 |
| concepts[6].display_name | Nilpotent group |
| concepts[7].id | https://openalex.org/C182306322 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5304571986198425 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1779371 |
| concepts[7].display_name | Order (exchange) |
| concepts[8].id | https://openalex.org/C114614502 |
| concepts[8].level | 1 |
| concepts[8].score | 0.49537527561187744 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[8].display_name | Combinatorics |
| concepts[9].id | https://openalex.org/C202444582 |
| concepts[9].level | 1 |
| concepts[9].score | 0.46266841888427734 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[9].display_name | Pure mathematics |
| concepts[10].id | https://openalex.org/C2777212361 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4456244707107544 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[10].display_name | Class (philosophy) |
| concepts[11].id | https://openalex.org/C139352143 |
| concepts[11].level | 2 |
| concepts[11].score | 0.430185467004776 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q82571 |
| concepts[11].display_name | Linear algebra |
| concepts[12].id | https://openalex.org/C106487976 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41122308373451233 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[12].display_name | Matrix (chemical analysis) |
| concepts[13].id | https://openalex.org/C136119220 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3584008812904358 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[13].display_name | Algebra over a field |
| concepts[14].id | https://openalex.org/C118615104 |
| concepts[14].level | 1 |
| concepts[14].score | 0.34383901953697205 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[14].display_name | Discrete mathematics |
| concepts[15].id | https://openalex.org/C158693339 |
| concepts[15].level | 2 |
| concepts[15].score | 0.20293638110160828 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q190524 |
| concepts[15].display_name | Eigenvalues and eigenvectors |
| concepts[16].id | https://openalex.org/C69044650 |
| concepts[16].level | 4 |
| concepts[16].score | 0.18955782055854797 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2739329 |
| concepts[16].display_name | Square matrix |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.14405545592308044 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| concepts[18].id | https://openalex.org/C2524010 |
| concepts[18].level | 1 |
| concepts[18].score | 0.10493853688240051 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[18].display_name | Geometry |
| concepts[19].id | https://openalex.org/C54848796 |
| concepts[19].level | 3 |
| concepts[19].score | 0.10224637389183044 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q339011 |
| concepts[19].display_name | Symmetric matrix |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.09636560082435608 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| concepts[21].id | https://openalex.org/C62520636 |
| concepts[21].level | 1 |
| concepts[21].score | 0.07387593388557434 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[21].display_name | Quantum mechanics |
| concepts[22].id | https://openalex.org/C41008148 |
| concepts[22].level | 0 |
| concepts[22].score | 0.07234948873519897 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[22].display_name | Computer science |
| concepts[23].id | https://openalex.org/C192562407 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[23].display_name | Materials science |
| concepts[24].id | https://openalex.org/C10138342 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[24].display_name | Finance |
| concepts[25].id | https://openalex.org/C162324750 |
| concepts[25].level | 0 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[25].display_name | Economics |
| concepts[26].id | https://openalex.org/C159985019 |
| concepts[26].level | 1 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[26].display_name | Composite material |
| concepts[27].id | https://openalex.org/C154945302 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[27].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/tridiagonal-matrix |
| keywords[0].score | 0.9216812252998352 |
| keywords[0].display_name | Tridiagonal matrix |
| keywords[1].id | https://openalex.org/keywords/sign |
| keywords[1].score | 0.8573514223098755 |
| keywords[1].display_name | Sign (mathematics) |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.8409523367881775 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/nilpotent |
| keywords[3].score | 0.7858613133430481 |
| keywords[3].display_name | Nilpotent |
| keywords[4].id | https://openalex.org/keywords/diagonal |
| keywords[4].score | 0.6550351977348328 |
| keywords[4].display_name | Diagonal |
| keywords[5].id | https://openalex.org/keywords/nilpotent-matrix |
| keywords[5].score | 0.5859861969947815 |
| keywords[5].display_name | Nilpotent matrix |
| keywords[6].id | https://openalex.org/keywords/nilpotent-group |
| keywords[6].score | 0.5614282488822937 |
| keywords[6].display_name | Nilpotent group |
| keywords[7].id | https://openalex.org/keywords/order |
| keywords[7].score | 0.5304571986198425 |
| keywords[7].display_name | Order (exchange) |
| keywords[8].id | https://openalex.org/keywords/combinatorics |
| keywords[8].score | 0.49537527561187744 |
| keywords[8].display_name | Combinatorics |
| keywords[9].id | https://openalex.org/keywords/pure-mathematics |
| keywords[9].score | 0.46266841888427734 |
| keywords[9].display_name | Pure mathematics |
| keywords[10].id | https://openalex.org/keywords/class |
| keywords[10].score | 0.4456244707107544 |
| keywords[10].display_name | Class (philosophy) |
| keywords[11].id | https://openalex.org/keywords/linear-algebra |
| keywords[11].score | 0.430185467004776 |
| keywords[11].display_name | Linear algebra |
| keywords[12].id | https://openalex.org/keywords/matrix |
| keywords[12].score | 0.41122308373451233 |
| keywords[12].display_name | Matrix (chemical analysis) |
| keywords[13].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[13].score | 0.3584008812904358 |
| keywords[13].display_name | Algebra over a field |
| keywords[14].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[14].score | 0.34383901953697205 |
| keywords[14].display_name | Discrete mathematics |
| keywords[15].id | https://openalex.org/keywords/eigenvalues-and-eigenvectors |
| keywords[15].score | 0.20293638110160828 |
| keywords[15].display_name | Eigenvalues and eigenvectors |
| keywords[16].id | https://openalex.org/keywords/square-matrix |
| keywords[16].score | 0.18955782055854797 |
| keywords[16].display_name | Square matrix |
| keywords[17].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[17].score | 0.14405545592308044 |
| keywords[17].display_name | Mathematical analysis |
| keywords[18].id | https://openalex.org/keywords/geometry |
| keywords[18].score | 0.10493853688240051 |
| keywords[18].display_name | Geometry |
| keywords[19].id | https://openalex.org/keywords/symmetric-matrix |
| keywords[19].score | 0.10224637389183044 |
| keywords[19].display_name | Symmetric matrix |
| keywords[20].id | https://openalex.org/keywords/physics |
| keywords[20].score | 0.09636560082435608 |
| keywords[20].display_name | Physics |
| keywords[21].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[21].score | 0.07387593388557434 |
| keywords[21].display_name | Quantum mechanics |
| keywords[22].id | https://openalex.org/keywords/computer-science |
| keywords[22].score | 0.07234948873519897 |
| keywords[22].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.13001/1081-3810.3075 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S121701187 |
| locations[0].source.issn | 1081-3810, 1537-9582 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1081-3810 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronic Journal of Linear Algebra |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Electronic Journal of Linear Algebra |
| locations[0].landing_page_url | https://doi.org/10.13001/1081-3810.3075 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5019319907 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3333-4002 |
| authorships[0].author.display_name | Yubin Gao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I135714990 |
| authorships[0].affiliations[0].raw_affiliation_string | North University of China |
| authorships[0].institutions[0].id | https://openalex.org/I135714990 |
| authorships[0].institutions[0].ror | https://ror.org/047bp1713 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I135714990 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | North University of China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yubin Gao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | North University of China |
| authorships[1].author.id | https://openalex.org/A5081941172 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3170-7853 |
| authorships[1].author.display_name | Yanling Shao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I135714990 |
| authorships[1].affiliations[0].raw_affiliation_string | North University of China |
| authorships[1].institutions[0].id | https://openalex.org/I135714990 |
| authorships[1].institutions[0].ror | https://ror.org/047bp1713 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I135714990 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | North University of China |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Yanling Shao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | North University of China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.13001/1081-3810.3075 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Potentially nilpotent tridiagonal sign patterns of order 4 |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10792 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Matrix Theory and Algorithms |
| related_works | https://openalex.org/W4298239761, https://openalex.org/W2952902844, https://openalex.org/W2086828714, https://openalex.org/W4298352699, https://openalex.org/W1965214493, https://openalex.org/W2950966903, https://openalex.org/W2083592367, https://openalex.org/W1979400941, https://openalex.org/W2936478249, https://openalex.org/W2530630468 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.13001/1081-3810.3075 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S121701187 |
| best_oa_location.source.issn | 1081-3810, 1537-9582 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1081-3810 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronic Journal of Linear Algebra |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The Electronic Journal of Linear Algebra |
| best_oa_location.landing_page_url | https://doi.org/10.13001/1081-3810.3075 |
| primary_location.id | doi:10.13001/1081-3810.3075 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S121701187 |
| primary_location.source.issn | 1081-3810, 1537-9582 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1081-3810 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronic Journal of Linear Algebra |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Electronic Journal of Linear Algebra |
| primary_location.landing_page_url | https://doi.org/10.13001/1081-3810.3075 |
| publication_date | 2016-02-05 |
| publication_year | 2016 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 89 |
| abstract_inverted_index.$4 | 67 |
| abstract_inverted_index.4$ | 69 |
| abstract_inverted_index.An | 0 |
| abstract_inverted_index.In | 27, 86 |
| abstract_inverted_index.PN | 74 |
| abstract_inverted_index.be | 10 |
| abstract_inverted_index.if | 14 |
| abstract_inverted_index.is | 7, 59, 73, 95 |
| abstract_inverted_index.n$ | 2 |
| abstract_inverted_index.of | 38, 44, 57, 66 |
| abstract_inverted_index.to | 9, 83 |
| abstract_inverted_index.$B$ | 21 |
| abstract_inverted_index.A}$ | 6 |
| abstract_inverted_index.For | 63 |
| abstract_inverted_index.and | 32, 55, 78 |
| abstract_inverted_index.for | 92 |
| abstract_inverted_index.one | 56 |
| abstract_inverted_index.the | 49, 60, 64 |
| abstract_inverted_index.$4$, | 40 |
| abstract_inverted_index.(PN) | 13 |
| abstract_inverted_index.A}$. | 26 |
| abstract_inverted_index.gave | 51 |
| abstract_inverted_index.open | 53 |
| abstract_inverted_index.real | 19 |
| abstract_inverted_index.said | 8 |
| abstract_inverted_index.sign | 3, 23, 36, 71 |
| abstract_inverted_index.some | 17, 52 |
| abstract_inverted_index.them | 58 |
| abstract_inverted_index.this | 87, 93 |
| abstract_inverted_index.tree | 35 |
| abstract_inverted_index.with | 22, 76 |
| abstract_inverted_index.{\em | 41, 62 |
| abstract_inverted_index.being | 84 |
| abstract_inverted_index.class | 65 |
| abstract_inverted_index.order | 39 |
| abstract_inverted_index.there | 15 |
| abstract_inverted_index.${\cal | 5, 25 |
| abstract_inverted_index.Linear | 45 |
| abstract_inverted_index.SAP?}\ | 85 |
| abstract_inverted_index.Z.~Li, | 30 |
| abstract_inverted_index.\times | 68 |
| abstract_inverted_index.answer | 91 |
| abstract_inverted_index.exists | 16 |
| abstract_inverted_index.given. | 96 |
| abstract_inverted_index.matrix | 20 |
| abstract_inverted_index.paper, | 88 |
| abstract_inverted_index.2010.], | 48 |
| abstract_inverted_index.Journal | 43 |
| abstract_inverted_index.authors | 50 |
| abstract_inverted_index.pattern | 4, 24 |
| abstract_inverted_index.$n\times | 1 |
| abstract_inverted_index.F.~Hall, | 29 |
| abstract_inverted_index.diagonal | 80 |
| abstract_inverted_index.entries) | 81 |
| abstract_inverted_index.negative | 79 |
| abstract_inverted_index.patterns | 37 |
| abstract_inverted_index.positive | 77, 90 |
| abstract_inverted_index.question | 94 |
| abstract_inverted_index.(together | 75 |
| abstract_inverted_index.Algebra}, | 46 |
| abstract_inverted_index.[M.~Arav, | 28 |
| abstract_inverted_index.arbitrary | 34 |
| abstract_inverted_index.nilpotent | 12, 18 |
| abstract_inverted_index.patterns, | 72 |
| abstract_inverted_index.Electronic | 42 |
| abstract_inverted_index.K.~Kaphle, | 31 |
| abstract_inverted_index.equivalent | 82 |
| abstract_inverted_index.following: | 61 |
| abstract_inverted_index.questions, | 54 |
| abstract_inverted_index.potentially | 11 |
| abstract_inverted_index.tridiagonal | 70 |
| abstract_inverted_index.20:180--197, | 47 |
| abstract_inverted_index.N.~Manzagol.Spectrally | 33 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.12051471 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |