Powerful and accurate case-control analysis of spatial molecular data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.02.07.637149
As spatial molecular data grow in scope and resolution, there is a pressing need to identify key spatial structures associated with disease. Current approaches typically make restrictive assumptions such as representing tissue regions by local abundances of manually typed, discrete cell types, or representing samples in terms of abundances of manually called, discrete spatial structures; this risks overlooking important signals. Here we introduce variational inference-based microniche analysis (VIMA), a method that combines deep learning with principled statistics to discover associated spatial features with greater flexibility and precision. VIMA trains an ensemble of variational autoencoders to extract numerical “fingerprints” from small tissue patches that capture their biological content. It uses these fingerprints to define a large number of data-dependent “microniches” – small, potentially overlapping groups of tissue patches with highly similar biology that span multiple samples. It then meta-analyzes across the autoencoders to identify microniches whose abundance correlates with case-control status while controlling for multiple testing. We show in simulations that VIMA is well calibrated. We then apply VIMA to spatial datasets spanning three different diseases and spatial modalities: a 7-marker immunofluorescence (IF) microscopy dataset in rheumatoid arthritis (RA), a 52-marker CO-Detection by indEXing (CODEX) dataset in ulcerative colitis (UC), and a 140-gene spatial transcriptomics dataset in dementia. In each case, we recapitulate known biology and identify novel spatial features of disease that were not discoverable with current state-of-the-art methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.02.07.637149
- OA Status
- green
- References
- 64
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407273910
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407273910Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.02.07.637149Digital Object Identifier
- Title
-
Powerful and accurate case-control analysis of spatial molecular dataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-08Full publication date if available
- Authors
-
Yakir Reshef, Lakshay Sood, Michelle Curtis, Laurie Rumker, Daniel Stein, Mukta G. Palshikar, Saba Nayar, Andrew Filer, A. Helena Jonsson, Ilya Korsunsky, Soumya RaychaudhuriList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.02.07.637149Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1101/2025.02.07.637149Direct OA link when available
- Concepts
-
Computational biology, Computer science, Control (management), Artificial intelligence, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
64Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407273910 |
|---|---|
| doi | https://doi.org/10.1101/2025.02.07.637149 |
| ids.doi | https://doi.org/10.1101/2025.02.07.637149 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39975274 |
| ids.openalex | https://openalex.org/W4407273910 |
| fwci | 0.0 |
| type | preprint |
| title | Powerful and accurate case-control analysis of spatial molecular data |
| awards[0].id | https://openalex.org/G6139977889 |
| awards[0].funder_id | https://openalex.org/F4320334626 |
| awards[0].display_name | |
| awards[0].funder_award_id | MR/X013308/1 |
| awards[0].funder_display_name | Medical Research Council |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T10885 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9908000230789185 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Gene expression and cancer classification |
| topics[2].id | https://openalex.org/T12867 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9850000143051147 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Advanced Biosensing Techniques and Applications |
| funders[0].id | https://openalex.org/F4320334626 |
| funders[0].ror | https://ror.org/03x94j517 |
| funders[0].display_name | Medical Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C70721500 |
| concepts[0].level | 1 |
| concepts[0].score | 0.46782630681991577 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[0].display_name | Computational biology |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4410158097743988 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2775924081 |
| concepts[2].level | 2 |
| concepts[2].score | 0.42539751529693604 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[2].display_name | Control (management) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3830673396587372 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C86803240 |
| concepts[4].level | 0 |
| concepts[4].score | 0.35822129249572754 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[4].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computational-biology |
| keywords[0].score | 0.46782630681991577 |
| keywords[0].display_name | Computational biology |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4410158097743988 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/control |
| keywords[2].score | 0.42539751529693604 |
| keywords[2].display_name | Control (management) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3830673396587372 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/biology |
| keywords[4].score | 0.35822129249572754 |
| keywords[4].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1101/2025.02.07.637149 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.02.07.637149 |
| locations[1].id | pmid:39975274 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | bioRxiv : the preprint server for biology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39975274 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11839118 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | bioRxiv |
| locations[2].landing_page_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC11839118/ |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5024961870 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6463-4203 |
| authorships[0].author.display_name | Yakir Reshef |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I107606265 |
| authorships[0].affiliations[0].raw_affiliation_string | Broad Institute of MIT and Harvard |
| authorships[0].institutions[0].id | https://openalex.org/I107606265 |
| authorships[0].institutions[0].ror | https://ror.org/05a0ya142 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I107606265 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Broad Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yakir Reshef |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Broad Institute of MIT and Harvard |
| authorships[1].author.id | https://openalex.org/A5116198625 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Lakshay Sood |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I107606265 |
| authorships[1].affiliations[0].raw_affiliation_string | Broad Institute of MIT and Harvard |
| authorships[1].institutions[0].id | https://openalex.org/I107606265 |
| authorships[1].institutions[0].ror | https://ror.org/05a0ya142 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I107606265 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Broad Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lakshay Sood |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Broad Institute of MIT and Harvard |
| authorships[2].author.id | https://openalex.org/A5048144459 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6843-4839 |
| authorships[2].author.display_name | Michelle Curtis |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I107606265 |
| authorships[2].affiliations[0].raw_affiliation_string | Broad Institute of MIT and Harvard |
| authorships[2].institutions[0].id | https://openalex.org/I107606265 |
| authorships[2].institutions[0].ror | https://ror.org/05a0ya142 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I107606265 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Broad Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Michelle Curtis |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Broad Institute of MIT and Harvard |
| authorships[3].author.id | https://openalex.org/A5033688432 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5522-3402 |
| authorships[3].author.display_name | Laurie Rumker |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2801851002 |
| authorships[3].affiliations[0].raw_affiliation_string | Harvard University |
| authorships[3].institutions[0].id | https://openalex.org/I2801851002 |
| authorships[3].institutions[0].ror | https://ror.org/006v7bf86 |
| authorships[3].institutions[0].type | other |
| authorships[3].institutions[0].lineage | https://openalex.org/I136199984, https://openalex.org/I2801851002 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Harvard University Press |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Laurie Rumker |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Harvard University |
| authorships[4].author.id | https://openalex.org/A5101983014 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Daniel Stein |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2801851002 |
| authorships[4].affiliations[0].raw_affiliation_string | Harvard University |
| authorships[4].institutions[0].id | https://openalex.org/I2801851002 |
| authorships[4].institutions[0].ror | https://ror.org/006v7bf86 |
| authorships[4].institutions[0].type | other |
| authorships[4].institutions[0].lineage | https://openalex.org/I136199984, https://openalex.org/I2801851002 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Harvard University Press |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Daniel J. Stein |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Harvard University |
| authorships[5].author.id | https://openalex.org/A5056509174 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1179-7903 |
| authorships[5].author.display_name | Mukta G. Palshikar |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1283280774 |
| authorships[5].affiliations[0].raw_affiliation_string | Brigham and Women's Hospital |
| authorships[5].institutions[0].id | https://openalex.org/I1283280774 |
| authorships[5].institutions[0].ror | https://ror.org/04b6nzv94 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I1283280774, https://openalex.org/I48633490 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Brigham and Women's Hospital |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Mukta G. Palshikar |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Brigham and Women's Hospital |
| authorships[6].author.id | https://openalex.org/A5079297779 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4350-110X |
| authorships[6].author.display_name | Saba Nayar |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I79619799 |
| authorships[6].affiliations[0].raw_affiliation_string | University of Birmingham |
| authorships[6].institutions[0].id | https://openalex.org/I79619799 |
| authorships[6].institutions[0].ror | https://ror.org/03angcq70 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I79619799 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | University of Birmingham |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Saba Nayar |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | University of Birmingham |
| authorships[7].author.id | https://openalex.org/A5047260745 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-8164-6249 |
| authorships[7].author.display_name | Andrew Filer |
| authorships[7].countries | GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I79619799 |
| authorships[7].affiliations[0].raw_affiliation_string | University of Birmingham |
| authorships[7].institutions[0].id | https://openalex.org/I79619799 |
| authorships[7].institutions[0].ror | https://ror.org/03angcq70 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I79619799 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | University of Birmingham |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Andrew Filer |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | University of Birmingham |
| authorships[8].author.id | https://openalex.org/A5077489802 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-9558-2474 |
| authorships[8].author.display_name | A. Helena Jonsson |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I2802236040 |
| authorships[8].affiliations[0].raw_affiliation_string | University of Colorado |
| authorships[8].institutions[0].id | https://openalex.org/I2802236040 |
| authorships[8].institutions[0].ror | https://ror.org/00jc20583 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I2802236040 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | University of Colorado System |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Anna Helena Jonsson |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | University of Colorado |
| authorships[9].author.id | https://openalex.org/A5049625162 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-4848-3948 |
| authorships[9].author.display_name | Ilya Korsunsky |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I1283280774 |
| authorships[9].affiliations[0].raw_affiliation_string | Brigham and Women's Hospital |
| authorships[9].institutions[0].id | https://openalex.org/I1283280774 |
| authorships[9].institutions[0].ror | https://ror.org/04b6nzv94 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I1283280774, https://openalex.org/I48633490 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Brigham and Women's Hospital |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Ilya Korsunsky |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Brigham and Women's Hospital |
| authorships[10].author.id | https://openalex.org/A5081489856 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-1901-8265 |
| authorships[10].author.display_name | Soumya Raychaudhuri |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I107606265 |
| authorships[10].affiliations[0].raw_affiliation_string | Broad Institute of MIT and Harvard |
| authorships[10].institutions[0].id | https://openalex.org/I107606265 |
| authorships[10].institutions[0].ror | https://ror.org/05a0ya142 |
| authorships[10].institutions[0].type | nonprofit |
| authorships[10].institutions[0].lineage | https://openalex.org/I107606265 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Broad Institute |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Soumya Raychaudhuri |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Broad Institute of MIT and Harvard |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1101/2025.02.07.637149 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-02-09T00:00:00 |
| display_name | Powerful and accurate case-control analysis of spatial molecular data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W2082860237, https://openalex.org/W2119695867, https://openalex.org/W2130076355, https://openalex.org/W1990804418, https://openalex.org/W1993764875, https://openalex.org/W2046158694, https://openalex.org/W2788277189 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1101/2025.02.07.637149 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.02.07.637149 |
| primary_location.id | doi:10.1101/2025.02.07.637149 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.02.07.637149 |
| publication_date | 2025-02-08 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4206709873, https://openalex.org/W2094251422, https://openalex.org/W2087749506, https://openalex.org/W2322548491, https://openalex.org/W2050345568, https://openalex.org/W2053129129, https://openalex.org/W2949238013, https://openalex.org/W2042789810, https://openalex.org/W4389938094, https://openalex.org/W4389670531, https://openalex.org/W2471536144, https://openalex.org/W4321611267, https://openalex.org/W3023701177, https://openalex.org/W2017712522, https://openalex.org/W2911879897, https://openalex.org/W3214361718, https://openalex.org/W3047081808, https://openalex.org/W4317556170, https://openalex.org/W3165120573, https://openalex.org/W4307715791, https://openalex.org/W4389488172, https://openalex.org/W4309918428, https://openalex.org/W4406768732, https://openalex.org/W3108118546, https://openalex.org/W4226192560, https://openalex.org/W4411100466, https://openalex.org/W4393397152, https://openalex.org/W4412454271, https://openalex.org/W4402634766, https://openalex.org/W4220675433, https://openalex.org/W4402297720, https://openalex.org/W4404204966, https://openalex.org/W2984472267, https://openalex.org/W2194775991, https://openalex.org/W3207910758, https://openalex.org/W4319456837, https://openalex.org/W4388488716, https://openalex.org/W3018856393, https://openalex.org/W2791033272, https://openalex.org/W4386624403, https://openalex.org/W4385504907, https://openalex.org/W1996609843, https://openalex.org/W4403619489, https://openalex.org/W2132508894, https://openalex.org/W4403401644, https://openalex.org/W2159838014, https://openalex.org/W4400948944, https://openalex.org/W3201436434, https://openalex.org/W4387142556, https://openalex.org/W4401339790, https://openalex.org/W4406931967, https://openalex.org/W4378909224, https://openalex.org/W4398201291, https://openalex.org/W4402220065, https://openalex.org/W2133059825, https://openalex.org/W2948978827, https://openalex.org/W2800392236, https://openalex.org/W3117464799, https://openalex.org/W4406727824, https://openalex.org/W4288359172, https://openalex.org/W4402521632, https://openalex.org/W4392956156, https://openalex.org/W2786672974, https://openalex.org/W2953036966 |
| referenced_works_count | 64 |
| abstract_inverted_index.a | 12, 69, 114, 179, 189, 201 |
| abstract_inverted_index.As | 1 |
| abstract_inverted_index.In | 208 |
| abstract_inverted_index.It | 108, 136 |
| abstract_inverted_index.We | 156, 165 |
| abstract_inverted_index.an | 90 |
| abstract_inverted_index.as | 30 |
| abstract_inverted_index.by | 34, 192 |
| abstract_inverted_index.in | 6, 46, 158, 185, 196, 206 |
| abstract_inverted_index.is | 11, 162 |
| abstract_inverted_index.of | 37, 48, 50, 92, 117, 125, 220 |
| abstract_inverted_index.or | 43 |
| abstract_inverted_index.to | 15, 78, 95, 112, 142, 169 |
| abstract_inverted_index.we | 62, 211 |
| abstract_inverted_index.and | 8, 86, 176, 200, 215 |
| abstract_inverted_index.for | 153 |
| abstract_inverted_index.key | 17 |
| abstract_inverted_index.not | 224 |
| abstract_inverted_index.the | 140 |
| abstract_inverted_index.– | 120 |
| abstract_inverted_index.(IF) | 182 |
| abstract_inverted_index.Here | 61 |
| abstract_inverted_index.VIMA | 88, 161, 168 |
| abstract_inverted_index.cell | 41 |
| abstract_inverted_index.data | 4 |
| abstract_inverted_index.deep | 73 |
| abstract_inverted_index.each | 209 |
| abstract_inverted_index.from | 99 |
| abstract_inverted_index.grow | 5 |
| abstract_inverted_index.make | 26 |
| abstract_inverted_index.need | 14 |
| abstract_inverted_index.show | 157 |
| abstract_inverted_index.span | 133 |
| abstract_inverted_index.such | 29 |
| abstract_inverted_index.that | 71, 103, 132, 160, 222 |
| abstract_inverted_index.then | 137, 166 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.uses | 109 |
| abstract_inverted_index.well | 163 |
| abstract_inverted_index.were | 223 |
| abstract_inverted_index.with | 21, 75, 83, 128, 148, 226 |
| abstract_inverted_index.(RA), | 188 |
| abstract_inverted_index.(UC), | 199 |
| abstract_inverted_index.apply | 167 |
| abstract_inverted_index.case, | 210 |
| abstract_inverted_index.known | 213 |
| abstract_inverted_index.large | 115 |
| abstract_inverted_index.local | 35 |
| abstract_inverted_index.novel | 217 |
| abstract_inverted_index.risks | 57 |
| abstract_inverted_index.scope | 7 |
| abstract_inverted_index.small | 100 |
| abstract_inverted_index.terms | 47 |
| abstract_inverted_index.their | 105 |
| abstract_inverted_index.there | 10 |
| abstract_inverted_index.these | 110 |
| abstract_inverted_index.three | 173 |
| abstract_inverted_index.while | 151 |
| abstract_inverted_index.whose | 145 |
| abstract_inverted_index.across | 139 |
| abstract_inverted_index.define | 113 |
| abstract_inverted_index.groups | 124 |
| abstract_inverted_index.highly | 129 |
| abstract_inverted_index.method | 70 |
| abstract_inverted_index.number | 116 |
| abstract_inverted_index.small, | 121 |
| abstract_inverted_index.status | 150 |
| abstract_inverted_index.tissue | 32, 101, 126 |
| abstract_inverted_index.trains | 89 |
| abstract_inverted_index.typed, | 39 |
| abstract_inverted_index.types, | 42 |
| abstract_inverted_index.(CODEX) | 194 |
| abstract_inverted_index.(VIMA), | 68 |
| abstract_inverted_index.Current | 23 |
| abstract_inverted_index.biology | 131, 214 |
| abstract_inverted_index.called, | 52 |
| abstract_inverted_index.capture | 104 |
| abstract_inverted_index.colitis | 198 |
| abstract_inverted_index.current | 227 |
| abstract_inverted_index.dataset | 184, 195, 205 |
| abstract_inverted_index.disease | 221 |
| abstract_inverted_index.extract | 96 |
| abstract_inverted_index.greater | 84 |
| abstract_inverted_index.patches | 102, 127 |
| abstract_inverted_index.regions | 33 |
| abstract_inverted_index.samples | 45 |
| abstract_inverted_index.similar | 130 |
| abstract_inverted_index.spatial | 2, 18, 54, 81, 170, 177, 203, 218 |
| abstract_inverted_index.140-gene | 202 |
| abstract_inverted_index.7-marker | 180 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.analysis | 67 |
| abstract_inverted_index.combines | 72 |
| abstract_inverted_index.content. | 107 |
| abstract_inverted_index.datasets | 171 |
| abstract_inverted_index.discover | 79 |
| abstract_inverted_index.discrete | 40, 53 |
| abstract_inverted_index.disease. | 22 |
| abstract_inverted_index.diseases | 175 |
| abstract_inverted_index.ensemble | 91 |
| abstract_inverted_index.features | 82, 219 |
| abstract_inverted_index.identify | 16, 143, 216 |
| abstract_inverted_index.indEXing | 193 |
| abstract_inverted_index.learning | 74 |
| abstract_inverted_index.manually | 38, 51 |
| abstract_inverted_index.methods. | 229 |
| abstract_inverted_index.multiple | 134, 154 |
| abstract_inverted_index.pressing | 13 |
| abstract_inverted_index.samples. | 135 |
| abstract_inverted_index.signals. | 60 |
| abstract_inverted_index.spanning | 172 |
| abstract_inverted_index.testing. | 155 |
| abstract_inverted_index.52-marker | 190 |
| abstract_inverted_index.abundance | 146 |
| abstract_inverted_index.arthritis | 187 |
| abstract_inverted_index.dementia. | 207 |
| abstract_inverted_index.different | 174 |
| abstract_inverted_index.important | 59 |
| abstract_inverted_index.introduce | 63 |
| abstract_inverted_index.molecular | 3 |
| abstract_inverted_index.numerical | 97 |
| abstract_inverted_index.typically | 25 |
| abstract_inverted_index.abundances | 36, 49 |
| abstract_inverted_index.approaches | 24 |
| abstract_inverted_index.associated | 20, 80 |
| abstract_inverted_index.biological | 106 |
| abstract_inverted_index.correlates | 147 |
| abstract_inverted_index.microniche | 66 |
| abstract_inverted_index.microscopy | 183 |
| abstract_inverted_index.precision. | 87 |
| abstract_inverted_index.principled | 76 |
| abstract_inverted_index.rheumatoid | 186 |
| abstract_inverted_index.statistics | 77 |
| abstract_inverted_index.structures | 19 |
| abstract_inverted_index.ulcerative | 197 |
| abstract_inverted_index.assumptions | 28 |
| abstract_inverted_index.calibrated. | 164 |
| abstract_inverted_index.controlling | 152 |
| abstract_inverted_index.flexibility | 85 |
| abstract_inverted_index.microniches | 144 |
| abstract_inverted_index.modalities: | 178 |
| abstract_inverted_index.overlapping | 123 |
| abstract_inverted_index.overlooking | 58 |
| abstract_inverted_index.potentially | 122 |
| abstract_inverted_index.resolution, | 9 |
| abstract_inverted_index.restrictive | 27 |
| abstract_inverted_index.simulations | 159 |
| abstract_inverted_index.structures; | 55 |
| abstract_inverted_index.variational | 64, 93 |
| abstract_inverted_index.CO-Detection | 191 |
| abstract_inverted_index.autoencoders | 94, 141 |
| abstract_inverted_index.case-control | 149 |
| abstract_inverted_index.discoverable | 225 |
| abstract_inverted_index.fingerprints | 111 |
| abstract_inverted_index.recapitulate | 212 |
| abstract_inverted_index.representing | 31, 44 |
| abstract_inverted_index.meta-analyzes | 138 |
| abstract_inverted_index.data-dependent | 118 |
| abstract_inverted_index.inference-based | 65 |
| abstract_inverted_index.transcriptomics | 204 |
| abstract_inverted_index.state-of-the-art | 228 |
| abstract_inverted_index.“microniches” | 119 |
| abstract_inverted_index.immunofluorescence | 181 |
| abstract_inverted_index.“fingerprints” | 98 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5024961870 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 11 |
| corresponding_institution_ids | https://openalex.org/I107606265 |
| citation_normalized_percentile.value | 0.03430705 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |