PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2111.00902
The better accuracy and efficiency trade-off has been a challenging problem in object detection. In this work, we are dedicated to studying key optimizations and neural network architecture choices for object detection to improve accuracy and efficiency. We investigate the applicability of the anchor-free strategy on lightweight object detection models. We enhance the backbone structure and design the lightweight structure of the neck, which improves the feature extraction ability of the network. We improve label assignment strategy and loss function to make training more stable and efficient. Through these optimizations, we create a new family of real-time object detectors, named PP-PicoDet, which achieves superior performance on object detection for mobile devices. Our models achieve better trade-offs between accuracy and latency compared to other popular models. PicoDet-S with only 0.99M parameters achieves 30.6% mAP, which is an absolute 4.8% improvement in mAP while reducing mobile CPU inference latency by 55% compared to YOLOX-Nano, and is an absolute 7.1% improvement in mAP compared to NanoDet. It reaches 123 FPS (150 FPS using Paddle Lite) on mobile ARM CPU when the input size is 320. PicoDet-L with only 3.3M parameters achieves 40.9% mAP, which is an absolute 3.7% improvement in mAP and 44% faster than YOLOv5s. As shown in Figure 1, our models far outperform the state-of-the-art results for lightweight object detection. Code and pre-trained models are available at https://github.com/PaddlePaddle/PaddleDetection.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2111.00902
- https://arxiv.org/pdf/2111.00902
- OA Status
- green
- Cited By
- 88
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3209766476
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3209766476Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2111.00902Digital Object Identifier
- Title
-
PP-PicoDet: A Better Real-Time Object Detector on Mobile DevicesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-01Full publication date if available
- Authors
-
Guanghua Yu, Qinyao Chang, Wenyu Lv, Chang Xu, Cheng Cui, Wei Ji, Qingqing Dang, Kaipeng Deng, Guanzhong Wang, Yuning Du, Baohua Lai, Qiwen Liu, Xiaoguang Hu, Dianhai Yu, Yanjun MaList of authors in order
- Landing page
-
https://arxiv.org/abs/2111.00902Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2111.00902Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2111.00902Direct OA link when available
- Concepts
-
Computer science, Latency (audio), Object detection, Artificial intelligence, Detector, Inference, Central processing unit, Object (grammar), Code (set theory), Feature (linguistics), Real-time computing, Computer engineering, Computer vision, Pattern recognition (psychology), Computer hardware, Philosophy, Telecommunications, Set (abstract data type), Programming language, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
88Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 14, 2024: 23, 2023: 43, 2022: 8Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3209766476 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2111.00902 |
| ids.doi | https://doi.org/10.48550/arxiv.2111.00902 |
| ids.mag | 3209766476 |
| ids.openalex | https://openalex.org/W3209766476 |
| fwci | |
| type | preprint |
| title | PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9955999851226807 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T12702 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9836999773979187 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2808 |
| topics[2].subfield.display_name | Neurology |
| topics[2].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7983584403991699 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C82876162 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6991651654243469 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17096504 |
| concepts[1].display_name | Latency (audio) |
| concepts[2].id | https://openalex.org/C2776151529 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6784682273864746 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[2].display_name | Object detection |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5068638920783997 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C94915269 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5022315979003906 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[4].display_name | Detector |
| concepts[5].id | https://openalex.org/C2776214188 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4620368480682373 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[5].display_name | Inference |
| concepts[6].id | https://openalex.org/C49154492 |
| concepts[6].level | 2 |
| concepts[6].score | 0.460869163274765 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5300 |
| concepts[6].display_name | Central processing unit |
| concepts[7].id | https://openalex.org/C2781238097 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45136451721191406 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[7].display_name | Object (grammar) |
| concepts[8].id | https://openalex.org/C2776760102 |
| concepts[8].level | 3 |
| concepts[8].score | 0.44339871406555176 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[8].display_name | Code (set theory) |
| concepts[9].id | https://openalex.org/C2776401178 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4192411005496979 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[9].display_name | Feature (linguistics) |
| concepts[10].id | https://openalex.org/C79403827 |
| concepts[10].level | 1 |
| concepts[10].score | 0.39722394943237305 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[10].display_name | Real-time computing |
| concepts[11].id | https://openalex.org/C113775141 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3564482033252716 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[11].display_name | Computer engineering |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3393598794937134 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.33290886878967285 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C9390403 |
| concepts[14].level | 1 |
| concepts[14].score | 0.18994393944740295 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3966 |
| concepts[14].display_name | Computer hardware |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C76155785 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[16].display_name | Telecommunications |
| concepts[17].id | https://openalex.org/C177264268 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[17].display_name | Set (abstract data type) |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| concepts[19].id | https://openalex.org/C41895202 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[19].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7983584403991699 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/latency |
| keywords[1].score | 0.6991651654243469 |
| keywords[1].display_name | Latency (audio) |
| keywords[2].id | https://openalex.org/keywords/object-detection |
| keywords[2].score | 0.6784682273864746 |
| keywords[2].display_name | Object detection |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5068638920783997 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/detector |
| keywords[4].score | 0.5022315979003906 |
| keywords[4].display_name | Detector |
| keywords[5].id | https://openalex.org/keywords/inference |
| keywords[5].score | 0.4620368480682373 |
| keywords[5].display_name | Inference |
| keywords[6].id | https://openalex.org/keywords/central-processing-unit |
| keywords[6].score | 0.460869163274765 |
| keywords[6].display_name | Central processing unit |
| keywords[7].id | https://openalex.org/keywords/object |
| keywords[7].score | 0.45136451721191406 |
| keywords[7].display_name | Object (grammar) |
| keywords[8].id | https://openalex.org/keywords/code |
| keywords[8].score | 0.44339871406555176 |
| keywords[8].display_name | Code (set theory) |
| keywords[9].id | https://openalex.org/keywords/feature |
| keywords[9].score | 0.4192411005496979 |
| keywords[9].display_name | Feature (linguistics) |
| keywords[10].id | https://openalex.org/keywords/real-time-computing |
| keywords[10].score | 0.39722394943237305 |
| keywords[10].display_name | Real-time computing |
| keywords[11].id | https://openalex.org/keywords/computer-engineering |
| keywords[11].score | 0.3564482033252716 |
| keywords[11].display_name | Computer engineering |
| keywords[12].id | https://openalex.org/keywords/computer-vision |
| keywords[12].score | 0.3393598794937134 |
| keywords[12].display_name | Computer vision |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.33290886878967285 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/computer-hardware |
| keywords[14].score | 0.18994393944740295 |
| keywords[14].display_name | Computer hardware |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2111.00902 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2111.00902 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2111.00902 |
| locations[1].id | doi:10.48550/arxiv.2111.00902 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2111.00902 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5028479820 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Guanghua Yu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guanghua Yu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5029452184 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Qinyao Chang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qinyao Chang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5034256224 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Wenyu Lv |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wenyu Lv |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5045952644 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5968-9290 |
| authorships[3].author.display_name | Chang Xu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chang Xu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102068162 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Cheng Cui |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Cheng Cui |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5056318151 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4059-5902 |
| authorships[5].author.display_name | Wei Ji |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wei Ji |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5031021503 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5483-3778 |
| authorships[6].author.display_name | Qingqing Dang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Qingqing Dang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5014492142 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Kaipeng Deng |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Kaipeng Deng |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100771420 |
| authorships[8].author.orcid | https://orcid.org/0009-0000-8144-1892 |
| authorships[8].author.display_name | Guanzhong Wang |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Guanzhong Wang |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5010944460 |
| authorships[9].author.orcid | https://orcid.org/0009-0007-4995-5472 |
| authorships[9].author.display_name | Yuning Du |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Yuning Du |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5001155662 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Baohua Lai |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Baohua Lai |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5037089484 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-2776-9162 |
| authorships[11].author.display_name | Qiwen Liu |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Qiwen Liu |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5103534501 |
| authorships[12].author.orcid | |
| authorships[12].author.display_name | Xiaoguang Hu |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Xiaoguang Hu |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5084155236 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-0163-2603 |
| authorships[13].author.display_name | Dianhai Yu |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Dianhai Yu |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5047724561 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-1232-6142 |
| authorships[14].author.display_name | Yanjun Ma |
| authorships[14].author_position | last |
| authorships[14].raw_author_name | Yanjun Ma |
| authorships[14].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2111.00902 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2055243143, https://openalex.org/W4321636575, https://openalex.org/W2387982802, https://openalex.org/W1986418932, https://openalex.org/W2357796999, https://openalex.org/W2045526782, https://openalex.org/W3008625068, https://openalex.org/W3128807919, https://openalex.org/W3176411177, https://openalex.org/W3035501883 |
| cited_by_count | 88 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 14 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 23 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 43 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 8 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2111.00902 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2111.00902 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2111.00902 |
| primary_location.id | pmh:oai:arXiv.org:2111.00902 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2111.00902 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2111.00902 |
| publication_date | 2021-11-01 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 92 |
| abstract_inverted_index.1, | 207 |
| abstract_inverted_index.As | 203 |
| abstract_inverted_index.In | 14 |
| abstract_inverted_index.It | 163 |
| abstract_inverted_index.We | 37, 50, 72 |
| abstract_inverted_index.an | 135, 154, 192 |
| abstract_inverted_index.at | 225 |
| abstract_inverted_index.by | 147 |
| abstract_inverted_index.in | 11, 139, 158, 196, 205 |
| abstract_inverted_index.is | 134, 153, 180, 191 |
| abstract_inverted_index.of | 41, 60, 69, 95 |
| abstract_inverted_index.on | 45, 105, 172 |
| abstract_inverted_index.to | 20, 32, 80, 121, 150, 161 |
| abstract_inverted_index.we | 17, 90 |
| abstract_inverted_index.123 | 165 |
| abstract_inverted_index.44% | 199 |
| abstract_inverted_index.55% | 148 |
| abstract_inverted_index.ARM | 174 |
| abstract_inverted_index.CPU | 144, 175 |
| abstract_inverted_index.FPS | 166, 168 |
| abstract_inverted_index.Our | 111 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 3, 24, 35, 55, 77, 85, 118, 152, 198, 220 |
| abstract_inverted_index.are | 18, 223 |
| abstract_inverted_index.far | 210 |
| abstract_inverted_index.for | 29, 108, 215 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.key | 22 |
| abstract_inverted_index.mAP | 140, 159, 197 |
| abstract_inverted_index.new | 93 |
| abstract_inverted_index.our | 208 |
| abstract_inverted_index.the | 39, 42, 52, 57, 61, 65, 70, 177, 212 |
| abstract_inverted_index.(150 | 167 |
| abstract_inverted_index.3.3M | 185 |
| abstract_inverted_index.3.7% | 194 |
| abstract_inverted_index.320. | 181 |
| abstract_inverted_index.4.8% | 137 |
| abstract_inverted_index.7.1% | 156 |
| abstract_inverted_index.Code | 219 |
| abstract_inverted_index.been | 7 |
| abstract_inverted_index.loss | 78 |
| abstract_inverted_index.mAP, | 132, 189 |
| abstract_inverted_index.make | 81 |
| abstract_inverted_index.more | 83 |
| abstract_inverted_index.only | 127, 184 |
| abstract_inverted_index.size | 179 |
| abstract_inverted_index.than | 201 |
| abstract_inverted_index.this | 15 |
| abstract_inverted_index.when | 176 |
| abstract_inverted_index.with | 126, 183 |
| abstract_inverted_index.0.99M | 128 |
| abstract_inverted_index.30.6% | 131 |
| abstract_inverted_index.40.9% | 188 |
| abstract_inverted_index.Lite) | 171 |
| abstract_inverted_index.input | 178 |
| abstract_inverted_index.label | 74 |
| abstract_inverted_index.named | 99 |
| abstract_inverted_index.neck, | 62 |
| abstract_inverted_index.other | 122 |
| abstract_inverted_index.shown | 204 |
| abstract_inverted_index.these | 88 |
| abstract_inverted_index.using | 169 |
| abstract_inverted_index.which | 63, 101, 133, 190 |
| abstract_inverted_index.while | 141 |
| abstract_inverted_index.work, | 16 |
| abstract_inverted_index.Figure | 206 |
| abstract_inverted_index.Paddle | 170 |
| abstract_inverted_index.better | 1, 114 |
| abstract_inverted_index.create | 91 |
| abstract_inverted_index.design | 56 |
| abstract_inverted_index.family | 94 |
| abstract_inverted_index.faster | 200 |
| abstract_inverted_index.mobile | 109, 143, 173 |
| abstract_inverted_index.models | 112, 209, 222 |
| abstract_inverted_index.neural | 25 |
| abstract_inverted_index.object | 12, 30, 47, 97, 106, 217 |
| abstract_inverted_index.stable | 84 |
| abstract_inverted_index.Through | 87 |
| abstract_inverted_index.ability | 68 |
| abstract_inverted_index.achieve | 113 |
| abstract_inverted_index.between | 116 |
| abstract_inverted_index.choices | 28 |
| abstract_inverted_index.enhance | 51 |
| abstract_inverted_index.feature | 66 |
| abstract_inverted_index.improve | 33, 73 |
| abstract_inverted_index.latency | 119, 146 |
| abstract_inverted_index.models. | 49, 124 |
| abstract_inverted_index.network | 26 |
| abstract_inverted_index.popular | 123 |
| abstract_inverted_index.problem | 10 |
| abstract_inverted_index.reaches | 164 |
| abstract_inverted_index.results | 214 |
| abstract_inverted_index.NanoDet. | 162 |
| abstract_inverted_index.YOLOv5s. | 202 |
| abstract_inverted_index.absolute | 136, 155, 193 |
| abstract_inverted_index.accuracy | 2, 34, 117 |
| abstract_inverted_index.achieves | 102, 130, 187 |
| abstract_inverted_index.backbone | 53 |
| abstract_inverted_index.compared | 120, 149, 160 |
| abstract_inverted_index.devices. | 110 |
| abstract_inverted_index.function | 79 |
| abstract_inverted_index.improves | 64 |
| abstract_inverted_index.network. | 71 |
| abstract_inverted_index.reducing | 142 |
| abstract_inverted_index.strategy | 44, 76 |
| abstract_inverted_index.studying | 21 |
| abstract_inverted_index.superior | 103 |
| abstract_inverted_index.training | 82 |
| abstract_inverted_index.PicoDet-L | 182 |
| abstract_inverted_index.PicoDet-S | 125 |
| abstract_inverted_index.available | 224 |
| abstract_inverted_index.dedicated | 19 |
| abstract_inverted_index.detection | 31, 48, 107 |
| abstract_inverted_index.inference | 145 |
| abstract_inverted_index.real-time | 96 |
| abstract_inverted_index.structure | 54, 59 |
| abstract_inverted_index.trade-off | 5 |
| abstract_inverted_index.assignment | 75 |
| abstract_inverted_index.detection. | 13, 218 |
| abstract_inverted_index.detectors, | 98 |
| abstract_inverted_index.efficiency | 4 |
| abstract_inverted_index.efficient. | 86 |
| abstract_inverted_index.extraction | 67 |
| abstract_inverted_index.outperform | 211 |
| abstract_inverted_index.parameters | 129, 186 |
| abstract_inverted_index.trade-offs | 115 |
| abstract_inverted_index.PP-PicoDet, | 100 |
| abstract_inverted_index.YOLOX-Nano, | 151 |
| abstract_inverted_index.anchor-free | 43 |
| abstract_inverted_index.challenging | 9 |
| abstract_inverted_index.efficiency. | 36 |
| abstract_inverted_index.improvement | 138, 157, 195 |
| abstract_inverted_index.investigate | 38 |
| abstract_inverted_index.lightweight | 46, 58, 216 |
| abstract_inverted_index.performance | 104 |
| abstract_inverted_index.pre-trained | 221 |
| abstract_inverted_index.architecture | 27 |
| abstract_inverted_index.applicability | 40 |
| abstract_inverted_index.optimizations | 23 |
| abstract_inverted_index.optimizations, | 89 |
| abstract_inverted_index.state-of-the-art | 213 |
| abstract_inverted_index.https://github.com/PaddlePaddle/PaddleDetection. | 226 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 15 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4000000059604645 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |