PPARgene 2.0: leveraging large language models and multi-omics data for enhanced identification and prediction of PPAR target genes Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.64898/2025.12.01.691485
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear receptor superfamily. Upon ligand binding, PPARs activate target gene transcription and regulate a variety of important physiological processes such as lipid metabolism, inflammation, wound healing and immune responses. PPARgene is a database that integrates literature-curated and computationally predicted PPAR target genes. It provides gene-level annotations including tissue specificity, species, and supporting PubMed IDs. Computational predictions are generated using a machine learning method that combines PPRE motif analysis with microarray expression data. Here, we introduce PPARgene 2.0, a 10-year update to the original PPARgene database. This update adds 35 newly reported PPARα target genes, 20 PPARβ/δ target genes, and 72 PPARγ target genes, bringing the total number of curated target genes in the database to 337. To retrieve newly reported PPAR target genes from the literature, we used two language models to screen publications after 2016. Candidate papers were then manually reviewed, and verified target genes were added to the updated database. This update also improved the predictive method by expanding the volume of high-throughput gene expression data and incorporating PPAR-related ChIP-seq datasets alongside in silico PPRE analysis. Fivefold cross-validation demonstrated that the new predictive method outperforms the original one. The updated prediction tool is available as part of the PPARgene 2.0 platform. The database is openly accessible at https://www.ppargene.org .
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.64898/2025.12.01.691485
- OA Status
- gold
- References
- 16
- OpenAlex ID
- https://openalex.org/W4417116751
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417116751Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.64898/2025.12.01.691485Digital Object Identifier
- Title
-
PPARgene 2.0: leveraging large language models and multi-omics data for enhanced identification and prediction of PPAR target genesWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-04Full publication date if available
- Authors
-
Jingxi Qin, Weili Xie, H. Li, Hao Li, Yangchao Luo, Taining Sha, Nanping Wang, Yanhui Li, Fang LiList of authors in order
- Landing page
-
https://doi.org/10.64898/2025.12.01.691485Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.64898/2025.12.01.691485Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
16Number of works referenced by this work
Full payload
| id | https://openalex.org/W4417116751 |
|---|---|
| doi | https://doi.org/10.64898/2025.12.01.691485 |
| ids.doi | https://doi.org/10.64898/2025.12.01.691485 |
| ids.openalex | https://openalex.org/W4417116751 |
| fwci | |
| type | article |
| title | PPARgene 2.0: leveraging large language models and multi-omics data for enhanced identification and prediction of PPAR target genes |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.64898/2025.12.01.691485 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.64898/2025.12.01.691485 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5051069939 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-3347-0697 |
| authorships[0].author.display_name | Jingxi Qin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jingxi Qin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101742955 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5030-0605 |
| authorships[1].author.display_name | Weili Xie |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Weili Xie |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5113290190 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | H. Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Heng Li |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100348600 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4821-9461 |
| authorships[3].author.display_name | Hao Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hao Li |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5053076381 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0001-1194 |
| authorships[4].author.display_name | Yangchao Luo |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yu Luo |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5114096623 |
| authorships[5].author.orcid | https://orcid.org/0009-0003-6065-8744 |
| authorships[5].author.display_name | Taining Sha |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Tianming Sha |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5091188597 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8528-8132 |
| authorships[6].author.display_name | Nanping Wang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Nanping Wang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100360587 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7838-8277 |
| authorships[7].author.display_name | Yanhui Li |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yanhui Li |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100610476 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-5456-0255 |
| authorships[8].author.display_name | Fang Li |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Li Fang |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.64898/2025.12.01.691485 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-08T00:00:00 |
| display_name | PPARgene 2.0: leveraging large language models and multi-omics data for enhanced identification and prediction of PPAR target genes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:45:41.426853 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.64898/2025.12.01.691485 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.64898/2025.12.01.691485 |
| primary_location.id | doi:10.64898/2025.12.01.691485 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.64898/2025.12.01.691485 |
| publication_date | 2025-12-04 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2113328569, https://openalex.org/W2111960429, https://openalex.org/W1490298078, https://openalex.org/W2011154010, https://openalex.org/W2126218858, https://openalex.org/W2144829836, https://openalex.org/W1974744093, https://openalex.org/W2333828476, https://openalex.org/W4327810158, https://openalex.org/W4388454971, https://openalex.org/W2259938310, https://openalex.org/W2988126442, https://openalex.org/W4362660267, https://openalex.org/W4396976552, https://openalex.org/W1973094248, https://openalex.org/W2179438025 |
| referenced_works_count | 16 |
| abstract_inverted_index.. | 221 |
| abstract_inverted_index.a | 24, 42, 70, 88 |
| abstract_inverted_index.20 | 105 |
| abstract_inverted_index.35 | 99 |
| abstract_inverted_index.72 | 110 |
| abstract_inverted_index.It | 53 |
| abstract_inverted_index.To | 127 |
| abstract_inverted_index.as | 31, 207 |
| abstract_inverted_index.at | 219 |
| abstract_inverted_index.by | 170 |
| abstract_inverted_index.in | 122, 185 |
| abstract_inverted_index.is | 41, 205, 216 |
| abstract_inverted_index.of | 9, 26, 118, 174, 209 |
| abstract_inverted_index.to | 91, 125, 142, 159 |
| abstract_inverted_index.we | 84, 137 |
| abstract_inverted_index.2.0 | 212 |
| abstract_inverted_index.The | 201, 214 |
| abstract_inverted_index.and | 22, 37, 47, 61, 109, 153, 179 |
| abstract_inverted_index.are | 5, 67 |
| abstract_inverted_index.new | 194 |
| abstract_inverted_index.the | 10, 92, 115, 123, 135, 160, 167, 172, 193, 198, 210 |
| abstract_inverted_index.two | 139 |
| abstract_inverted_index.2.0, | 87 |
| abstract_inverted_index.337. | 126 |
| abstract_inverted_index.IDs. | 64 |
| abstract_inverted_index.PPAR | 50, 131 |
| abstract_inverted_index.PPRE | 76, 187 |
| abstract_inverted_index.This | 96, 163 |
| abstract_inverted_index.Upon | 14 |
| abstract_inverted_index.adds | 98 |
| abstract_inverted_index.also | 165 |
| abstract_inverted_index.data | 178 |
| abstract_inverted_index.from | 134 |
| abstract_inverted_index.gene | 20, 176 |
| abstract_inverted_index.one. | 200 |
| abstract_inverted_index.part | 208 |
| abstract_inverted_index.such | 30 |
| abstract_inverted_index.that | 44, 74, 192 |
| abstract_inverted_index.then | 150 |
| abstract_inverted_index.tool | 204 |
| abstract_inverted_index.used | 138 |
| abstract_inverted_index.were | 149, 157 |
| abstract_inverted_index.with | 79 |
| abstract_inverted_index.2016. | 146 |
| abstract_inverted_index.Here, | 83 |
| abstract_inverted_index.PPARs | 17 |
| abstract_inverted_index.added | 158 |
| abstract_inverted_index.after | 145 |
| abstract_inverted_index.data. | 82 |
| abstract_inverted_index.genes | 121, 133, 156 |
| abstract_inverted_index.lipid | 32 |
| abstract_inverted_index.motif | 77 |
| abstract_inverted_index.newly | 100, 129 |
| abstract_inverted_index.total | 116 |
| abstract_inverted_index.using | 69 |
| abstract_inverted_index.wound | 35 |
| abstract_inverted_index.PPARα | 102 |
| abstract_inverted_index.PPARγ | 111 |
| abstract_inverted_index.PubMed | 63 |
| abstract_inverted_index.genes, | 104, 108, 113 |
| abstract_inverted_index.genes. | 52 |
| abstract_inverted_index.immune | 38 |
| abstract_inverted_index.ligand | 15 |
| abstract_inverted_index.method | 73, 169, 196 |
| abstract_inverted_index.models | 141 |
| abstract_inverted_index.number | 117 |
| abstract_inverted_index.openly | 217 |
| abstract_inverted_index.papers | 148 |
| abstract_inverted_index.screen | 143 |
| abstract_inverted_index.silico | 186 |
| abstract_inverted_index.target | 19, 51, 103, 107, 112, 120, 132, 155 |
| abstract_inverted_index.tissue | 58 |
| abstract_inverted_index.update | 90, 97, 164 |
| abstract_inverted_index.volume | 173 |
| abstract_inverted_index.(PPARs) | 4 |
| abstract_inverted_index.10-year | 89 |
| abstract_inverted_index.curated | 119 |
| abstract_inverted_index.factors | 8 |
| abstract_inverted_index.healing | 36 |
| abstract_inverted_index.machine | 71 |
| abstract_inverted_index.nuclear | 11 |
| abstract_inverted_index.updated | 161, 202 |
| abstract_inverted_index.variety | 25 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.ChIP-seq | 182 |
| abstract_inverted_index.Fivefold | 189 |
| abstract_inverted_index.PPARgene | 40, 86, 94, 211 |
| abstract_inverted_index.activate | 18 |
| abstract_inverted_index.analysis | 78 |
| abstract_inverted_index.binding, | 16 |
| abstract_inverted_index.bringing | 114 |
| abstract_inverted_index.combines | 75 |
| abstract_inverted_index.database | 43, 124, 215 |
| abstract_inverted_index.datasets | 183 |
| abstract_inverted_index.improved | 166 |
| abstract_inverted_index.language | 140 |
| abstract_inverted_index.learning | 72 |
| abstract_inverted_index.manually | 151 |
| abstract_inverted_index.original | 93, 199 |
| abstract_inverted_index.provides | 54 |
| abstract_inverted_index.receptor | 12 |
| abstract_inverted_index.regulate | 23 |
| abstract_inverted_index.reported | 101, 130 |
| abstract_inverted_index.retrieve | 128 |
| abstract_inverted_index.species, | 60 |
| abstract_inverted_index.verified | 154 |
| abstract_inverted_index.Candidate | 147 |
| abstract_inverted_index.PPARβ/δ | 106 |
| abstract_inverted_index.alongside | 184 |
| abstract_inverted_index.analysis. | 188 |
| abstract_inverted_index.available | 206 |
| abstract_inverted_index.database. | 95, 162 |
| abstract_inverted_index.expanding | 171 |
| abstract_inverted_index.generated | 68 |
| abstract_inverted_index.important | 27 |
| abstract_inverted_index.including | 57 |
| abstract_inverted_index.introduce | 85 |
| abstract_inverted_index.platform. | 213 |
| abstract_inverted_index.predicted | 49 |
| abstract_inverted_index.processes | 29 |
| abstract_inverted_index.receptors | 3 |
| abstract_inverted_index.reviewed, | 152 |
| abstract_inverted_index.Peroxisome | 1 |
| abstract_inverted_index.accessible | 218 |
| abstract_inverted_index.expression | 81, 177 |
| abstract_inverted_index.gene-level | 55 |
| abstract_inverted_index.integrates | 45 |
| abstract_inverted_index.microarray | 80 |
| abstract_inverted_index.prediction | 203 |
| abstract_inverted_index.predictive | 168, 195 |
| abstract_inverted_index.responses. | 39 |
| abstract_inverted_index.supporting | 62 |
| abstract_inverted_index.annotations | 56 |
| abstract_inverted_index.literature, | 136 |
| abstract_inverted_index.metabolism, | 33 |
| abstract_inverted_index.outperforms | 197 |
| abstract_inverted_index.predictions | 66 |
| abstract_inverted_index.PPAR-related | 181 |
| abstract_inverted_index.demonstrated | 191 |
| abstract_inverted_index.publications | 144 |
| abstract_inverted_index.specificity, | 59 |
| abstract_inverted_index.superfamily. | 13 |
| abstract_inverted_index.Computational | 65 |
| abstract_inverted_index.incorporating | 180 |
| abstract_inverted_index.inflammation, | 34 |
| abstract_inverted_index.physiological | 28 |
| abstract_inverted_index.transcription | 7, 21 |
| abstract_inverted_index.computationally | 48 |
| abstract_inverted_index.high-throughput | 175 |
| abstract_inverted_index.cross-validation | 190 |
| abstract_inverted_index.ligand-activated | 6 |
| abstract_inverted_index.literature-curated | 46 |
| abstract_inverted_index.proliferator-activated | 2 |
| abstract_inverted_index.https://www.ppargene.org | 220 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |