PPG-Based Accurate Insomnia Detection System Using Convolutional Neural Networks With Self-Attention Mechanism and Gated Recurrent Units Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3598863
Adequate sleep is essential for physical and mental well-being. The quality of sleep is significantly impacted by sleep disorders like narcolepsy, sleep apnea, nocturnal frontal lobe epilepsy, and insomnia. Insomnia is a prevalent sleep disorder characterized by difficulty initiating or maintaining sleep, leading to daytime fatigue and restlessness. An accurate and automated detection system is essential for effective diagnosis and management. Usually, polysomnogram (PSG) signals are utilized to identify sleep disorders, but these signals are challenging to handle, computationally intensive to process, and affect the convenience of patients. The proposed method provides a non-invasive approach for insomnia detection. To the best of our knowledge, this is the first study that utilizes single-channel photoplethysmography (PPG) to automatically detect insomnia. In the proposed study, we performed experiments on two publicly accessible datasets: the Cyclic Alternating Pattern (CAP) sleep database and the MESA Sleep Dataset, considering a diverse set of subjects. This study introduces a novel approach for PPG-based insomnia detection, utilizing Convolutional Neural Network (CNN) with self-attention, CNN with Gated Recurrent Unit (GRU), and transformer-based models. The CNN with GRU-based approach demonstrated notable performance, achieving impressive classification accuracy of 96.00%, alongside robust precision, recall, and F1-score. Importantly, we further explored model explainability using Grad-CAM, providing visual insights into the learned model’s decision-making from PPG signals. The results emphasize the effectiveness and interpretability of these advanced models in capturing complex patterns in PPG signals, establishing PPG-based sleep monitoring as a practical and efficient solution for home use with wearable devices.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3598863
- OA Status
- gold
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413465403
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413465403Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3598863Digital Object Identifier
- Title
-
PPG-Based Accurate Insomnia Detection System Using Convolutional Neural Networks With Self-Attention Mechanism and Gated Recurrent UnitsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Hardik Telangore, Heneel Makwana, Prithviraj Verma, Manish Sharma, Hasan Mir, U. Rajendra AcharyaList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3598863Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3598863Direct OA link when available
- Concepts
-
Computer science, Convolutional neural network, Mechanism (biology), Artificial intelligence, Recurrent neural network, Pattern recognition (psychology), Machine learning, Artificial neural network, Philosophy, EpistemologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413465403 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3598863 |
| ids.doi | https://doi.org/10.1109/access.2025.3598863 |
| ids.openalex | https://openalex.org/W4413465403 |
| fwci | 0.0 |
| type | article |
| title | PPG-Based Accurate Insomnia Detection System Using Convolutional Neural Networks With Self-Attention Mechanism and Gated Recurrent Units |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 145493 |
| biblio.first_page | 145474 |
| topics[0].id | https://openalex.org/T11373 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.7558000087738037 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Sleep and Work-Related Fatigue |
| topics[1].id | https://openalex.org/T14098 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.6711000204086304 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1708 |
| topics[1].subfield.display_name | Hardware and Architecture |
| topics[1].display_name | Energy Efficiency in Computing |
| topics[2].id | https://openalex.org/T10316 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.6563000082969666 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3205 |
| topics[2].subfield.display_name | Experimental and Cognitive Psychology |
| topics[2].display_name | Sleep and related disorders |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7214111685752869 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6564821004867554 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C89611455 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5601629018783569 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6804646 |
| concepts[2].display_name | Mechanism (biology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5429214835166931 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C147168706 |
| concepts[4].level | 3 |
| concepts[4].score | 0.452450156211853 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[4].display_name | Recurrent neural network |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43443363904953003 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3280230760574341 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.31274133920669556 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| concepts[9].id | https://openalex.org/C111472728 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[9].display_name | Epistemology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7214111685752869 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.6564821004867554 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/mechanism |
| keywords[2].score | 0.5601629018783569 |
| keywords[2].display_name | Mechanism (biology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5429214835166931 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[4].score | 0.452450156211853 |
| keywords[4].display_name | Recurrent neural network |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.43443363904953003 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.3280230760574341 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.31274133920669556 |
| keywords[7].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3598863 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3598863 |
| locations[1].id | pmh:oai:doaj.org/article:4ab4e3a9dc484af1b2242b025e1592f5 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 145474-145493 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/4ab4e3a9dc484af1b2242b025e1592f5 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5094048774 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-2803-7411 |
| authorships[0].author.display_name | Hardik Telangore |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3130511786 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad, Gujarat, India |
| authorships[0].institutions[0].id | https://openalex.org/I3130511786 |
| authorships[0].institutions[0].ror | https://ror.org/059me1x50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3130511786 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Institute of Infrastructure Technology Research and Management |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hardik Telangore |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad, Gujarat, India |
| authorships[1].author.id | https://openalex.org/A5119402190 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Heneel Makwana |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3130511786 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad, Gujarat, India |
| authorships[1].institutions[0].id | https://openalex.org/I3130511786 |
| authorships[1].institutions[0].ror | https://ror.org/059me1x50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3130511786 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Institute of Infrastructure Technology Research and Management |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Heneel Makwana |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad, Gujarat, India |
| authorships[2].author.id | https://openalex.org/A5074936835 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Prithviraj Verma |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3130511786 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad, Gujarat, India |
| authorships[2].institutions[0].id | https://openalex.org/I3130511786 |
| authorships[2].institutions[0].ror | https://ror.org/059me1x50 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3130511786 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Institute of Infrastructure Technology Research and Management |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Prithviraj Verma |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad, Gujarat, India |
| authorships[3].author.id | https://openalex.org/A5057990837 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2266-5332 |
| authorships[3].author.display_name | Manish Sharma |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3130511786 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad, Gujarat, India |
| authorships[3].institutions[0].id | https://openalex.org/I3130511786 |
| authorships[3].institutions[0].ror | https://ror.org/059me1x50 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I3130511786 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Institute of Infrastructure Technology Research and Management |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Manish Sharma |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad, Gujarat, India |
| authorships[4].author.id | https://openalex.org/A5027048647 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6863-3002 |
| authorships[4].author.display_name | Hasan Mir |
| authorships[4].countries | AE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I199440890 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, American University of Sharjah, Sharjah, United Arab Emirates |
| authorships[4].institutions[0].id | https://openalex.org/I199440890 |
| authorships[4].institutions[0].ror | https://ror.org/001g2fj96 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I199440890 |
| authorships[4].institutions[0].country_code | AE |
| authorships[4].institutions[0].display_name | American University of Sharjah |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hasan S. Mir |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical Engineering, American University of Sharjah, Sharjah, United Arab Emirates |
| authorships[5].author.id | https://openalex.org/A5074179735 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2689-8552 |
| authorships[5].author.display_name | U. Rajendra Acharya |
| authorships[5].countries | AU |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I185523456 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia |
| authorships[5].institutions[0].id | https://openalex.org/I185523456 |
| authorships[5].institutions[0].ror | https://ror.org/04sjbnx57 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I185523456 |
| authorships[5].institutions[0].country_code | AU |
| authorships[5].institutions[0].display_name | University of Southern Queensland |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | U Rajendra Acharya |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3598863 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | PPG-Based Accurate Insomnia Detection System Using Convolutional Neural Networks With Self-Attention Mechanism and Gated Recurrent Units |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11373 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.7558000087738037 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Sleep and Work-Related Fatigue |
| related_works | https://openalex.org/W4225394202, https://openalex.org/W4298287631, https://openalex.org/W2953061907, https://openalex.org/W1847088711, https://openalex.org/W3036642985, https://openalex.org/W3032952384, https://openalex.org/W3017902212, https://openalex.org/W2964335273, https://openalex.org/W2982145560, https://openalex.org/W2969450769 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3598863 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3598863 |
| primary_location.id | doi:10.1109/access.2025.3598863 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3598863 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2056787292, https://openalex.org/W2058473859, https://openalex.org/W2592878236, https://openalex.org/W2884790510, https://openalex.org/W4297839521, https://openalex.org/W3111722905, https://openalex.org/W39816332, https://openalex.org/W3127301893, https://openalex.org/W4392376346, https://openalex.org/W4390963982, https://openalex.org/W4385285628, https://openalex.org/W4213204904, https://openalex.org/W2771006757, https://openalex.org/W2804616119, https://openalex.org/W2009831405, https://openalex.org/W4391707575, https://openalex.org/W4385237565, https://openalex.org/W4386942074, https://openalex.org/W3158061033, https://openalex.org/W2000938010, https://openalex.org/W2937191485, https://openalex.org/W3026720205, https://openalex.org/W4310710101, https://openalex.org/W3201282232, https://openalex.org/W4283823720, https://openalex.org/W4365147254, https://openalex.org/W3170297763, https://openalex.org/W4210923389, https://openalex.org/W4301368684, https://openalex.org/W4206990233, https://openalex.org/W4377862096, https://openalex.org/W3172210633, https://openalex.org/W2795199184, https://openalex.org/W2117296910, https://openalex.org/W1937674079, https://openalex.org/W2148143831, https://openalex.org/W3091225957, https://openalex.org/W3013533105, https://openalex.org/W3110149873, https://openalex.org/W3043685378, https://openalex.org/W3011149747, https://openalex.org/W4224220262, https://openalex.org/W4361009944, https://openalex.org/W3034390803, https://openalex.org/W2991489129, https://openalex.org/W4388689405, https://openalex.org/W3176277941, https://openalex.org/W4403209657, https://openalex.org/W3211351911, https://openalex.org/W2962858109, https://openalex.org/W2732207034 |
| referenced_works_count | 51 |
| abstract_inverted_index.a | 31, 92, 143, 151, 236 |
| abstract_inverted_index.An | 48 |
| abstract_inverted_index.In | 118 |
| abstract_inverted_index.To | 98 |
| abstract_inverted_index.as | 235 |
| abstract_inverted_index.by | 16, 36 |
| abstract_inverted_index.in | 224, 228 |
| abstract_inverted_index.is | 2, 13, 30, 54, 105 |
| abstract_inverted_index.of | 11, 86, 101, 146, 186, 220 |
| abstract_inverted_index.on | 125 |
| abstract_inverted_index.or | 39 |
| abstract_inverted_index.to | 43, 67, 76, 80, 114 |
| abstract_inverted_index.we | 122, 195 |
| abstract_inverted_index.CNN | 165, 175 |
| abstract_inverted_index.PPG | 211, 229 |
| abstract_inverted_index.The | 9, 88, 174, 213 |
| abstract_inverted_index.and | 6, 27, 46, 50, 59, 82, 137, 171, 192, 218, 238 |
| abstract_inverted_index.are | 65, 74 |
| abstract_inverted_index.but | 71 |
| abstract_inverted_index.for | 4, 56, 95, 154, 241 |
| abstract_inverted_index.our | 102 |
| abstract_inverted_index.set | 145 |
| abstract_inverted_index.the | 84, 99, 106, 119, 130, 138, 206, 216 |
| abstract_inverted_index.two | 126 |
| abstract_inverted_index.use | 243 |
| abstract_inverted_index.MESA | 139 |
| abstract_inverted_index.This | 148 |
| abstract_inverted_index.Unit | 169 |
| abstract_inverted_index.best | 100 |
| abstract_inverted_index.from | 210 |
| abstract_inverted_index.home | 242 |
| abstract_inverted_index.into | 205 |
| abstract_inverted_index.like | 19 |
| abstract_inverted_index.lobe | 25 |
| abstract_inverted_index.that | 109 |
| abstract_inverted_index.this | 104 |
| abstract_inverted_index.with | 163, 166, 176, 244 |
| abstract_inverted_index.(CAP) | 134 |
| abstract_inverted_index.(CNN) | 162 |
| abstract_inverted_index.(PPG) | 113 |
| abstract_inverted_index.(PSG) | 63 |
| abstract_inverted_index.Gated | 167 |
| abstract_inverted_index.Sleep | 140 |
| abstract_inverted_index.first | 107 |
| abstract_inverted_index.model | 198 |
| abstract_inverted_index.novel | 152 |
| abstract_inverted_index.sleep | 1, 12, 17, 21, 33, 69, 135, 233 |
| abstract_inverted_index.study | 108, 149 |
| abstract_inverted_index.these | 72, 221 |
| abstract_inverted_index.using | 200 |
| abstract_inverted_index.(GRU), | 170 |
| abstract_inverted_index.Cyclic | 131 |
| abstract_inverted_index.Neural | 160 |
| abstract_inverted_index.affect | 83 |
| abstract_inverted_index.apnea, | 22 |
| abstract_inverted_index.detect | 116 |
| abstract_inverted_index.mental | 7 |
| abstract_inverted_index.method | 90 |
| abstract_inverted_index.models | 223 |
| abstract_inverted_index.robust | 189 |
| abstract_inverted_index.sleep, | 41 |
| abstract_inverted_index.study, | 121 |
| abstract_inverted_index.system | 53 |
| abstract_inverted_index.visual | 203 |
| abstract_inverted_index.96.00%, | 187 |
| abstract_inverted_index.Network | 161 |
| abstract_inverted_index.Pattern | 133 |
| abstract_inverted_index.complex | 226 |
| abstract_inverted_index.daytime | 44 |
| abstract_inverted_index.diverse | 144 |
| abstract_inverted_index.fatigue | 45 |
| abstract_inverted_index.frontal | 24 |
| abstract_inverted_index.further | 196 |
| abstract_inverted_index.handle, | 77 |
| abstract_inverted_index.leading | 42 |
| abstract_inverted_index.learned | 207 |
| abstract_inverted_index.models. | 173 |
| abstract_inverted_index.notable | 180 |
| abstract_inverted_index.quality | 10 |
| abstract_inverted_index.recall, | 191 |
| abstract_inverted_index.results | 214 |
| abstract_inverted_index.signals | 64, 73 |
| abstract_inverted_index.Adequate | 0 |
| abstract_inverted_index.Dataset, | 141 |
| abstract_inverted_index.Insomnia | 29 |
| abstract_inverted_index.Usually, | 61 |
| abstract_inverted_index.accuracy | 185 |
| abstract_inverted_index.accurate | 49 |
| abstract_inverted_index.advanced | 222 |
| abstract_inverted_index.approach | 94, 153, 178 |
| abstract_inverted_index.database | 136 |
| abstract_inverted_index.devices. | 246 |
| abstract_inverted_index.disorder | 34 |
| abstract_inverted_index.explored | 197 |
| abstract_inverted_index.identify | 68 |
| abstract_inverted_index.impacted | 15 |
| abstract_inverted_index.insights | 204 |
| abstract_inverted_index.insomnia | 96, 156 |
| abstract_inverted_index.patterns | 227 |
| abstract_inverted_index.physical | 5 |
| abstract_inverted_index.process, | 81 |
| abstract_inverted_index.proposed | 89, 120 |
| abstract_inverted_index.provides | 91 |
| abstract_inverted_index.publicly | 127 |
| abstract_inverted_index.signals, | 230 |
| abstract_inverted_index.signals. | 212 |
| abstract_inverted_index.solution | 240 |
| abstract_inverted_index.utilized | 66 |
| abstract_inverted_index.utilizes | 110 |
| abstract_inverted_index.wearable | 245 |
| abstract_inverted_index.F1-score. | 193 |
| abstract_inverted_index.GRU-based | 177 |
| abstract_inverted_index.Grad-CAM, | 201 |
| abstract_inverted_index.PPG-based | 155, 232 |
| abstract_inverted_index.Recurrent | 168 |
| abstract_inverted_index.achieving | 182 |
| abstract_inverted_index.alongside | 188 |
| abstract_inverted_index.automated | 51 |
| abstract_inverted_index.capturing | 225 |
| abstract_inverted_index.datasets: | 129 |
| abstract_inverted_index.detection | 52 |
| abstract_inverted_index.diagnosis | 58 |
| abstract_inverted_index.disorders | 18 |
| abstract_inverted_index.effective | 57 |
| abstract_inverted_index.efficient | 239 |
| abstract_inverted_index.emphasize | 215 |
| abstract_inverted_index.epilepsy, | 26 |
| abstract_inverted_index.essential | 3, 55 |
| abstract_inverted_index.insomnia. | 28, 117 |
| abstract_inverted_index.intensive | 79 |
| abstract_inverted_index.nocturnal | 23 |
| abstract_inverted_index.patients. | 87 |
| abstract_inverted_index.performed | 123 |
| abstract_inverted_index.practical | 237 |
| abstract_inverted_index.prevalent | 32 |
| abstract_inverted_index.providing | 202 |
| abstract_inverted_index.subjects. | 147 |
| abstract_inverted_index.utilizing | 158 |
| abstract_inverted_index.accessible | 128 |
| abstract_inverted_index.detection, | 157 |
| abstract_inverted_index.detection. | 97 |
| abstract_inverted_index.difficulty | 37 |
| abstract_inverted_index.disorders, | 70 |
| abstract_inverted_index.impressive | 183 |
| abstract_inverted_index.initiating | 38 |
| abstract_inverted_index.introduces | 150 |
| abstract_inverted_index.knowledge, | 103 |
| abstract_inverted_index.monitoring | 234 |
| abstract_inverted_index.precision, | 190 |
| abstract_inverted_index.Alternating | 132 |
| abstract_inverted_index.challenging | 75 |
| abstract_inverted_index.considering | 142 |
| abstract_inverted_index.convenience | 85 |
| abstract_inverted_index.experiments | 124 |
| abstract_inverted_index.maintaining | 40 |
| abstract_inverted_index.management. | 60 |
| abstract_inverted_index.narcolepsy, | 20 |
| abstract_inverted_index.well-being. | 8 |
| abstract_inverted_index.Importantly, | 194 |
| abstract_inverted_index.demonstrated | 179 |
| abstract_inverted_index.establishing | 231 |
| abstract_inverted_index.non-invasive | 93 |
| abstract_inverted_index.performance, | 181 |
| abstract_inverted_index.Convolutional | 159 |
| abstract_inverted_index.automatically | 115 |
| abstract_inverted_index.characterized | 35 |
| abstract_inverted_index.effectiveness | 217 |
| abstract_inverted_index.polysomnogram | 62 |
| abstract_inverted_index.restlessness. | 47 |
| abstract_inverted_index.significantly | 14 |
| abstract_inverted_index.classification | 184 |
| abstract_inverted_index.explainability | 199 |
| abstract_inverted_index.model’s | 208 |
| abstract_inverted_index.single-channel | 111 |
| abstract_inverted_index.computationally | 78 |
| abstract_inverted_index.decision-making | 209 |
| abstract_inverted_index.self-attention, | 164 |
| abstract_inverted_index.interpretability | 219 |
| abstract_inverted_index.transformer-based | 172 |
| abstract_inverted_index.photoplethysmography | 112 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.39938072 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |