Practical Continual Forgetting for Pre-trained Vision Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.09705
For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners, and these requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify three key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. (iii) In real-world scenarios, the training samples may be scarce or partially missing during the process of forgetting. To address them, we first propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we introduce LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. To further extend GS-LoRA to more practical scenarios, we incorporate prototype information as additional supervision and introduce a more practical approach, GS-LoRA++. For each forgotten class, we move the logits away from its original prototype. For the remaining classes, we pull the logits closer to their respective prototypes. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that our method manages to forget specific classes with minimal impact on other classes. Codes have been released on https://github.com/bjzhb666/GS-LoRA.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.09705
- https://arxiv.org/pdf/2501.09705
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406549415
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406549415Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.09705Digital Object Identifier
- Title
-
Practical Continual Forgetting for Pre-trained Vision ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-16Full publication date if available
- Authors
-
Hongbo Zhao, Fei Zhu, Bolin Ni, Feng Zhu, Gaofeng Meng, Zhaoxiang ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.09705Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.09705Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.09705Direct OA link when available
- Concepts
-
Forgetting, Artificial intelligence, Computer science, Psychology, Computer vision, Cognitive psychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406549415 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.09705 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.09705 |
| ids.openalex | https://openalex.org/W4406549415 |
| fwci | |
| type | preprint |
| title | Practical Continual Forgetting for Pre-trained Vision Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10627 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9890999794006348 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image and Video Retrieval Techniques |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9696999788284302 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9527000188827515 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C7149132 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8270785808563232 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1377840 |
| concepts[0].display_name | Forgetting |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5173203945159912 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.43344977498054504 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4057618975639343 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3996436893939972 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C180747234 |
| concepts[5].level | 1 |
| concepts[5].score | 0.353384405374527 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[5].display_name | Cognitive psychology |
| keywords[0].id | https://openalex.org/keywords/forgetting |
| keywords[0].score | 0.8270785808563232 |
| keywords[0].display_name | Forgetting |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5173203945159912 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.43344977498054504 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.4057618975639343 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.3996436893939972 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[5].score | 0.353384405374527 |
| keywords[5].display_name | Cognitive psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.09705 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.09705 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.09705 |
| locations[1].id | doi:10.48550/arxiv.2501.09705 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.09705 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5009966547 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0043-0030 |
| authorships[0].author.display_name | Hongbo Zhao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhao, Hongbo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5074124642 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2226-2859 |
| authorships[1].author.display_name | Fei Zhu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhu, Fei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5012017422 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-7160-5523 |
| authorships[2].author.display_name | Bolin Ni |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ni, Bolin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5114860742 |
| authorships[3].author.orcid | https://orcid.org/0009-0002-5759-9176 |
| authorships[3].author.display_name | Feng Zhu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhu, Feng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100675867 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7103-6321 |
| authorships[4].author.display_name | Gaofeng Meng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Meng, Gaofeng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101589393 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1469-1469 |
| authorships[5].author.display_name | Zhaoxiang Zhang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zhang, Zhaoxiang |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.09705 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Practical Continual Forgetting for Pre-trained Vision Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10627 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9890999794006348 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image and Video Retrieval Techniques |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.09705 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.09705 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.09705 |
| primary_location.id | pmh:oai:arXiv.org:2501.09705 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.09705 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.09705 |
| publication_date | 2025-01-16 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 39, 44, 55, 149, 185 |
| abstract_inverted_index.In | 19, 99 |
| abstract_inverted_index.To | 116, 168 |
| abstract_inverted_index.We | 62, 216 |
| abstract_inverted_index.as | 66, 180 |
| abstract_inverted_index.at | 25 |
| abstract_inverted_index.be | 51, 96, 106 |
| abstract_inverted_index.by | 91 |
| abstract_inverted_index.in | 138 |
| abstract_inverted_index.is | 15, 48, 82, 154 |
| abstract_inverted_index.of | 114, 159 |
| abstract_inverted_index.on | 220, 241, 248 |
| abstract_inverted_index.or | 108 |
| abstract_inverted_index.to | 7, 50, 133, 172, 212, 234 |
| abstract_inverted_index.we | 119, 129, 176, 194, 207 |
| abstract_inverted_index.(i) | 74 |
| abstract_inverted_index.FFN | 136 |
| abstract_inverted_index.For | 0, 75, 85, 190, 203 |
| abstract_inverted_index.and | 2, 31, 34, 69, 79, 146, 163, 183, 225, 228 |
| abstract_inverted_index.any | 26 |
| abstract_inverted_index.for | 141 |
| abstract_inverted_index.its | 200 |
| abstract_inverted_index.key | 72 |
| abstract_inverted_index.may | 105 |
| abstract_inverted_index.our | 231 |
| abstract_inverted_index.out | 165 |
| abstract_inverted_index.the | 5, 60, 88, 92, 102, 112, 135, 166, 196, 204, 209 |
| abstract_inverted_index.(i), | 128 |
| abstract_inverted_index.(ii) | 84 |
| abstract_inverted_index.LoRA | 124, 131, 161 |
| abstract_inverted_index.away | 198 |
| abstract_inverted_index.been | 246 |
| abstract_inverted_index.both | 29 |
| abstract_inverted_index.each | 142, 191 |
| abstract_inverted_index.face | 221 |
| abstract_inverted_index.form | 38 |
| abstract_inverted_index.from | 11, 28, 54, 199 |
| abstract_inverted_index.have | 245 |
| abstract_inverted_index.more | 173, 186 |
| abstract_inverted_index.move | 195 |
| abstract_inverted_index.need | 6 |
| abstract_inverted_index.pull | 208 |
| abstract_inverted_index.such | 43 |
| abstract_inverted_index.task | 144 |
| abstract_inverted_index.that | 230 |
| abstract_inverted_index.this | 64 |
| abstract_inverted_index.time | 27 |
| abstract_inverted_index.with | 238 |
| abstract_inverted_index.(ii), | 148 |
| abstract_inverted_index.(iii) | 98 |
| abstract_inverted_index.Codes | 244 |
| abstract_inverted_index.Group | 122 |
| abstract_inverted_index.erase | 8 |
| abstract_inverted_index.first | 120 |
| abstract_inverted_index.group | 151 |
| abstract_inverted_index.image | 226 |
| abstract_inverted_index.model | 32, 57 |
| abstract_inverted_index.other | 242 |
| abstract_inverted_index.rest. | 61 |
| abstract_inverted_index.their | 213 |
| abstract_inverted_index.them, | 118 |
| abstract_inverted_index.these | 35 |
| abstract_inverted_index.three | 71 |
| abstract_inverted_index.under | 42 |
| abstract_inverted_index.users | 30 |
| abstract_inverted_index.while | 58 |
| abstract_inverted_index.Sparse | 123 |
| abstract_inverted_index.blocks | 140 |
| abstract_inverted_index.class, | 193 |
| abstract_inverted_index.closer | 211 |
| abstract_inverted_index.define | 63 |
| abstract_inverted_index.during | 111 |
| abstract_inverted_index.extend | 170 |
| abstract_inverted_index.forget | 235 |
| abstract_inverted_index.groups | 162 |
| abstract_inverted_index.impact | 89, 240 |
| abstract_inverted_index.layers | 137 |
| abstract_inverted_index.logits | 197, 210 |
| abstract_inverted_index.method | 232 |
| abstract_inverted_index.models | 14 |
| abstract_inverted_index.object | 223 |
| abstract_inverted_index.scarce | 107 |
| abstract_inverted_index.should | 95 |
| abstract_inverted_index.simple | 150 |
| abstract_inverted_index.sparse | 152 |
| abstract_inverted_index.vision | 13 |
| abstract_inverted_index.GS-LoRA | 171 |
| abstract_inverted_index.address | 117 |
| abstract_inverted_index.brought | 90 |
| abstract_inverted_index.classes | 237 |
| abstract_inverted_index.conduct | 217 |
| abstract_inverted_index.erasure | 22 |
| abstract_inverted_index.evident | 17 |
| abstract_inverted_index.further | 169 |
| abstract_inverted_index.manages | 233 |
| abstract_inverted_index.minimal | 239 |
| abstract_inverted_index.missing | 110 |
| abstract_inverted_index.modules | 132 |
| abstract_inverted_index.others. | 167 |
| abstract_inverted_index.owners, | 33 |
| abstract_inverted_index.privacy | 1 |
| abstract_inverted_index.problem | 65 |
| abstract_inverted_index.process | 113 |
| abstract_inverted_index.propose | 121 |
| abstract_inverted_index.removed | 53 |
| abstract_inverted_index.samples | 104 |
| abstract_inverted_index.towards | 127, 147 |
| abstract_inverted_index.usually | 37 |
| abstract_inverted_index.zeroing | 164 |
| abstract_inverted_index.adopted, | 155 |
| abstract_inverted_index.becoming | 16 |
| abstract_inverted_index.classes, | 206 |
| abstract_inverted_index.classes. | 243 |
| abstract_inverted_index.crucial. | 83 |
| abstract_inverted_index.deleting | 81 |
| abstract_inverted_index.enabling | 156 |
| abstract_inverted_index.expected | 49 |
| abstract_inverted_index.identify | 70 |
| abstract_inverted_index.minimal. | 97 |
| abstract_inverted_index.original | 201 |
| abstract_inverted_index.released | 247 |
| abstract_inverted_index.requests | 23, 36 |
| abstract_inverted_index.security | 3 |
| abstract_inverted_index.setting, | 45 |
| abstract_inverted_index.specific | 160, 236 |
| abstract_inverted_index.training | 103 |
| abstract_inverted_index.unwanted | 9, 76 |
| abstract_inverted_index.approach, | 188 |
| abstract_inverted_index.automatic | 157 |
| abstract_inverted_index.concerns, | 4 |
| abstract_inverted_index.continual | 67 |
| abstract_inverted_index.detection | 224 |
| abstract_inverted_index.effective | 80 |
| abstract_inverted_index.efficient | 78 |
| abstract_inverted_index.extensive | 218 |
| abstract_inverted_index.fine-tune | 134 |
| abstract_inverted_index.forgotten | 192 |
| abstract_inverted_index.introduce | 130, 184 |
| abstract_inverted_index.nowadays. | 18 |
| abstract_inverted_index.originate | 24 |
| abstract_inverted_index.partially | 109 |
| abstract_inverted_index.practical | 174, 187 |
| abstract_inverted_index.procedure | 94 |
| abstract_inverted_index.prototype | 178 |
| abstract_inverted_index.remaining | 86, 205 |
| abstract_inverted_index.selection | 158 |
| abstract_inverted_index.selective | 46 |
| abstract_inverted_index.sequence. | 40 |
| abstract_inverted_index.(GS-LoRA). | 125 |
| abstract_inverted_index.GS-LoRA++. | 189 |
| abstract_inverted_index.Therefore, | 41 |
| abstract_inverted_index.additional | 181 |
| abstract_inverted_index.forgetting | 68, 93, 143 |
| abstract_inverted_index.knowledge, | 77, 87 |
| abstract_inverted_index.prototype. | 202 |
| abstract_inverted_index.real-world | 20, 100 |
| abstract_inverted_index.respective | 214 |
| abstract_inverted_index.scenarios, | 21, 101, 175 |
| abstract_inverted_index.Transformer | 139 |
| abstract_inverted_index.challenges. | 73 |
| abstract_inverted_index.demonstrate | 229 |
| abstract_inverted_index.experiments | 219 |
| abstract_inverted_index.forgetting. | 115 |
| abstract_inverted_index.incorporate | 177 |
| abstract_inverted_index.information | 10, 47, 179 |
| abstract_inverted_index.maintaining | 59 |
| abstract_inverted_index.pre-trained | 12, 56 |
| abstract_inverted_index.prototypes. | 215 |
| abstract_inverted_index.supervision | 182 |
| abstract_inverted_index.continuously | 52 |
| abstract_inverted_index.recognition, | 222 |
| abstract_inverted_index.Specifically, | 126 |
| abstract_inverted_index.classification | 227 |
| abstract_inverted_index.independently, | 145 |
| abstract_inverted_index.regularization | 153 |
| abstract_inverted_index.https://github.com/bjzhb666/GS-LoRA. | 249 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |