Practical Performance Analysis for Multiple Information Fusion Based Scalable Localization System Using Wireless Sensor Networks Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.3390/s16091346
In practical localization system design, researchers need to consider several aspects to make the positioning efficiently and effectively, e.g., the available auxiliary information, sensing devices, equipment deployment and the environment. Then, these practical concerns turn out to be the technical problems, e.g., the sequential position state propagation, the target-anchor geometry effect, the Non-line-of-sight (NLOS) identification and the related prior information. It is necessary to construct an efficient framework that can exploit multiple available information and guide the system design. In this paper, we propose a scalable method to analyze system performance based on the Cramér–Rao lower bound (CRLB), which can fuse all of the information adaptively. Firstly, we use an abstract function to represent all of the wireless localization system model. Then, the unknown vector of the CRLB consists of two parts: the first part is the estimated vector, and the second part is the auxiliary vector, which helps improve the estimation accuracy. Accordingly, the Fisher information matrix is divided into two parts: the state matrix and the auxiliary matrix. Unlike the theoretical analysis, our CRLB can be a practical fundamental limit to denote the system that fuses multiple information in the complicated environment, e.g., recursive Bayesian estimation based on the hidden Markov model, the map matching method and the NLOS identification and mitigation methods. Thus, the theoretical results are approaching the real case more. In addition, our method is more adaptable than other CRLBs when considering more unknown important factors. We use the proposed method to analyze the wireless sensor network-based indoor localization system. The influence of the hybrid LOS/NLOS channels, the building layout information and the relative height differences between the target and anchors are analyzed. It is demonstrated that our method exploits all of the available information for the indoor localization systems and serves as an indicator for practical system evaluation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s16091346
- https://www.mdpi.com/1424-8220/16/9/1346/pdf?version=1472106803
- OA Status
- gold
- Cited By
- 4
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2411975036
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2411975036Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s16091346Digital Object Identifier
- Title
-
Practical Performance Analysis for Multiple Information Fusion Based Scalable Localization System Using Wireless Sensor NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-08-23Full publication date if available
- Authors
-
Y. B. Zhao, Xiaofan Li, Sha Zhang, Tianhui Meng, Yiwen ZhangList of authors in order
- Landing page
-
https://doi.org/10.3390/s16091346Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/16/9/1346/pdf?version=1472106803Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/16/9/1346/pdf?version=1472106803Direct OA link when available
- Concepts
-
Cramér–Rao bound, Computer science, Fisher information, Non-line-of-sight propagation, Upper and lower bounds, Position (finance), Scalability, Fuse (electrical), Sensor fusion, Identification (biology), Algorithm, Data mining, Wireless, Artificial intelligence, Machine learning, Estimation theory, Engineering, Mathematics, Electrical engineering, Mathematical analysis, Botany, Biology, Database, Economics, Telecommunications, FinanceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2019: 1, 2017: 2Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2411975036 |
|---|---|
| doi | https://doi.org/10.3390/s16091346 |
| ids.doi | https://doi.org/10.3390/s16091346 |
| ids.mag | 2411975036 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/27563898 |
| ids.openalex | https://openalex.org/W2411975036 |
| fwci | 0.47856605 |
| type | article |
| title | Practical Performance Analysis for Multiple Information Fusion Based Scalable Localization System Using Wireless Sensor Networks |
| biblio.issue | 9 |
| biblio.volume | 16 |
| biblio.last_page | 1346 |
| biblio.first_page | 1346 |
| topics[0].id | https://openalex.org/T10326 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Indoor and Outdoor Localization Technologies |
| topics[1].id | https://openalex.org/T11192 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Underwater Vehicles and Communication Systems |
| topics[2].id | https://openalex.org/T10191 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9934999942779541 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Robotics and Sensor-Based Localization |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C4978587 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8772457838058472 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1138810 |
| concepts[0].display_name | Cramér–Rao bound |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6886751651763916 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C29406490 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6518099308013916 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1420659 |
| concepts[2].display_name | Fisher information |
| concepts[3].id | https://openalex.org/C154910267 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5906546711921692 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1740982 |
| concepts[3].display_name | Non-line-of-sight propagation |
| concepts[4].id | https://openalex.org/C77553402 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4826374650001526 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q13222579 |
| concepts[4].display_name | Upper and lower bounds |
| concepts[5].id | https://openalex.org/C198082294 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4600865840911865 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3399648 |
| concepts[5].display_name | Position (finance) |
| concepts[6].id | https://openalex.org/C48044578 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4471035897731781 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[6].display_name | Scalability |
| concepts[7].id | https://openalex.org/C141353440 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4468899965286255 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q182221 |
| concepts[7].display_name | Fuse (electrical) |
| concepts[8].id | https://openalex.org/C33954974 |
| concepts[8].level | 2 |
| concepts[8].score | 0.430980920791626 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q486494 |
| concepts[8].display_name | Sensor fusion |
| concepts[9].id | https://openalex.org/C116834253 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41341865062713623 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[9].display_name | Identification (biology) |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.39293816685676575 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.38657933473587036 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C555944384 |
| concepts[12].level | 2 |
| concepts[12].score | 0.33486807346343994 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[12].display_name | Wireless |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.29910820722579956 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2566925883293152 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C167928553 |
| concepts[15].level | 2 |
| concepts[15].score | 0.1994209587574005 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1376021 |
| concepts[15].display_name | Estimation theory |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.173946350812912 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.11571604013442993 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C119599485 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[18].display_name | Electrical engineering |
| concepts[19].id | https://openalex.org/C134306372 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[19].display_name | Mathematical analysis |
| concepts[20].id | https://openalex.org/C59822182 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[20].display_name | Botany |
| concepts[21].id | https://openalex.org/C86803240 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[21].display_name | Biology |
| concepts[22].id | https://openalex.org/C77088390 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[22].display_name | Database |
| concepts[23].id | https://openalex.org/C162324750 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[23].display_name | Economics |
| concepts[24].id | https://openalex.org/C76155785 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[24].display_name | Telecommunications |
| concepts[25].id | https://openalex.org/C10138342 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[25].display_name | Finance |
| keywords[0].id | https://openalex.org/keywords/cramér–rao-bound |
| keywords[0].score | 0.8772457838058472 |
| keywords[0].display_name | Cramér–Rao bound |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6886751651763916 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/fisher-information |
| keywords[2].score | 0.6518099308013916 |
| keywords[2].display_name | Fisher information |
| keywords[3].id | https://openalex.org/keywords/non-line-of-sight-propagation |
| keywords[3].score | 0.5906546711921692 |
| keywords[3].display_name | Non-line-of-sight propagation |
| keywords[4].id | https://openalex.org/keywords/upper-and-lower-bounds |
| keywords[4].score | 0.4826374650001526 |
| keywords[4].display_name | Upper and lower bounds |
| keywords[5].id | https://openalex.org/keywords/position |
| keywords[5].score | 0.4600865840911865 |
| keywords[5].display_name | Position (finance) |
| keywords[6].id | https://openalex.org/keywords/scalability |
| keywords[6].score | 0.4471035897731781 |
| keywords[6].display_name | Scalability |
| keywords[7].id | https://openalex.org/keywords/fuse |
| keywords[7].score | 0.4468899965286255 |
| keywords[7].display_name | Fuse (electrical) |
| keywords[8].id | https://openalex.org/keywords/sensor-fusion |
| keywords[8].score | 0.430980920791626 |
| keywords[8].display_name | Sensor fusion |
| keywords[9].id | https://openalex.org/keywords/identification |
| keywords[9].score | 0.41341865062713623 |
| keywords[9].display_name | Identification (biology) |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.39293816685676575 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.38657933473587036 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/wireless |
| keywords[12].score | 0.33486807346343994 |
| keywords[12].display_name | Wireless |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.29910820722579956 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.2566925883293152 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/estimation-theory |
| keywords[15].score | 0.1994209587574005 |
| keywords[15].display_name | Estimation theory |
| keywords[16].id | https://openalex.org/keywords/engineering |
| keywords[16].score | 0.173946350812912 |
| keywords[16].display_name | Engineering |
| keywords[17].id | https://openalex.org/keywords/mathematics |
| keywords[17].score | 0.11571604013442993 |
| keywords[17].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/s16091346 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/16/9/1346/pdf?version=1472106803 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s16091346 |
| locations[1].id | pmid:27563898 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/27563898 |
| locations[2].id | pmh:oai:doaj.org/article:98a19846ff2f4e0eb1ff8524b7e931a1 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 16, Iss 9, p 1346 (2016) |
| locations[2].landing_page_url | https://doaj.org/article/98a19846ff2f4e0eb1ff8524b7e931a1 |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/16/9/1346/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors; Volume 16; Issue 9; Pages: 1346 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/s16091346 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:5038624 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/5038624 |
| locations[5].id | pmh:oai:refubium.fu-berlin.de:fub188/16986 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S4306402444 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | Refubium (Universitätsbibliothek der Freien Universität Berlin) |
| locations[5].source.host_organization | https://openalex.org/I75951250 |
| locations[5].source.host_organization_name | Freie Universität Berlin |
| locations[5].source.host_organization_lineage | https://openalex.org/I75951250 |
| locations[5].license | cc-by-nc-sa |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Wissenschaftlicher Artikel |
| locations[5].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | https://refubium.fu-berlin.de/handle/fub188/16986 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100728341 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7540-9092 |
| authorships[0].author.display_name | Y. B. Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[0].affiliations[0].raw_affiliation_string | Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I158809036 |
| authorships[0].affiliations[1].raw_affiliation_string | Shenzhen Institute of Radio Testing & Tech., Shenzhen 518000, China |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I158809036 |
| authorships[0].institutions[1].ror | https://ror.org/03wrf9427 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I158809036 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Shenzhen Institute of Information Technology |
| authorships[0].institutions[2].id | https://openalex.org/I4210145761 |
| authorships[0].institutions[2].ror | https://ror.org/04gh4er46 |
| authorships[0].institutions[2].type | facility |
| authorships[0].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yubin Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Shenzhen Institute of Radio Testing & Tech., Shenzhen 518000, China, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
| authorships[1].author.id | https://openalex.org/A5100637082 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6687-5569 |
| authorships[1].author.display_name | Xiaofan Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I158809036 |
| authorships[1].affiliations[0].raw_affiliation_string | Shenzhen Institute of Radio Testing & Tech., Shenzhen 518000, China |
| authorships[1].institutions[0].id | https://openalex.org/I158809036 |
| authorships[1].institutions[0].ror | https://ror.org/03wrf9427 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I158809036 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenzhen Institute of Information Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaofan Li |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Shenzhen Institute of Radio Testing & Tech., Shenzhen 518000, China |
| authorships[2].author.id | https://openalex.org/A5100764401 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0140-8393 |
| authorships[2].author.display_name | Sha Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I158809036 |
| authorships[2].affiliations[0].raw_affiliation_string | Shenzhen Institute of Radio Testing & Tech., Shenzhen 518000, China |
| authorships[2].institutions[0].id | https://openalex.org/I158809036 |
| authorships[2].institutions[0].ror | https://ror.org/03wrf9427 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I158809036 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shenzhen Institute of Information Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sha Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Shenzhen Institute of Radio Testing & Tech., Shenzhen 518000, China |
| authorships[3].author.id | https://openalex.org/A5103517933 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Tianhui Meng |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I75951250 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I75951250 |
| authorships[3].institutions[0].ror | https://ror.org/046ak2485 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I75951250 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Freie Universität Berlin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tianhui Meng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany |
| authorships[4].author.id | https://openalex.org/A5100430679 |
| authorships[4].author.orcid | https://orcid.org/0009-0005-7001-3813 |
| authorships[4].author.display_name | Yiwen Zhang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[4].affiliations[0].raw_affiliation_string | Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
| authorships[4].institutions[0].id | https://openalex.org/I19820366 |
| authorships[4].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[4].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[4].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yiwen Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/16/9/1346/pdf?version=1472106803 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Practical Performance Analysis for Multiple Information Fusion Based Scalable Localization System Using Wireless Sensor Networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10326 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Indoor and Outdoor Localization Technologies |
| related_works | https://openalex.org/W2041821984, https://openalex.org/W2056956967, https://openalex.org/W4297911919, https://openalex.org/W2167303690, https://openalex.org/W2090958333, https://openalex.org/W2125440076, https://openalex.org/W1994676335, https://openalex.org/W2066487328, https://openalex.org/W2494111473, https://openalex.org/W2876132667 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2019 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2017 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 6 |
| best_oa_location.id | doi:10.3390/s16091346 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/16/9/1346/pdf?version=1472106803 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s16091346 |
| primary_location.id | doi:10.3390/s16091346 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/16/9/1346/pdf?version=1472106803 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s16091346 |
| publication_date | 2016-08-23 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2100989187, https://openalex.org/W1978995278, https://openalex.org/W2006805041, https://openalex.org/W1988543519, https://openalex.org/W2166121369, https://openalex.org/W2114490950, https://openalex.org/W2178829616, https://openalex.org/W2103375723, https://openalex.org/W2098185283, https://openalex.org/W2170484568, https://openalex.org/W2168843824, https://openalex.org/W2169967930, https://openalex.org/W1694992579, https://openalex.org/W1976155457, https://openalex.org/W2104130465, https://openalex.org/W1984197955, https://openalex.org/W2156668452, https://openalex.org/W1970229744, https://openalex.org/W2055652396, https://openalex.org/W2133710940, https://openalex.org/W2103542269, https://openalex.org/W2104479788, https://openalex.org/W2160337655, https://openalex.org/W653761051, https://openalex.org/W4229706427, https://openalex.org/W2093950377, https://openalex.org/W2157688943, https://openalex.org/W2022132246, https://openalex.org/W1982320694, https://openalex.org/W2952350176, https://openalex.org/W2610857016, https://openalex.org/W1746665946, https://openalex.org/W2492721637, https://openalex.org/W2232641051 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 84, 178 |
| abstract_inverted_index.In | 0, 79, 225 |
| abstract_inverted_index.It | 60, 278 |
| abstract_inverted_index.We | 241 |
| abstract_inverted_index.an | 65, 109, 298 |
| abstract_inverted_index.as | 297 |
| abstract_inverted_index.be | 37, 177 |
| abstract_inverted_index.in | 190 |
| abstract_inverted_index.is | 61, 135, 143, 158, 229, 279 |
| abstract_inverted_index.of | 102, 115, 125, 129, 257, 286 |
| abstract_inverted_index.on | 92, 199 |
| abstract_inverted_index.to | 7, 11, 36, 63, 87, 112, 182, 246 |
| abstract_inverted_index.we | 82, 107 |
| abstract_inverted_index.The | 255 |
| abstract_inverted_index.all | 101, 114, 285 |
| abstract_inverted_index.and | 16, 27, 55, 74, 139, 166, 208, 212, 266, 274, 295 |
| abstract_inverted_index.are | 219, 276 |
| abstract_inverted_index.can | 69, 99, 176 |
| abstract_inverted_index.for | 290, 300 |
| abstract_inverted_index.map | 205 |
| abstract_inverted_index.our | 174, 227, 282 |
| abstract_inverted_index.out | 35 |
| abstract_inverted_index.the | 13, 19, 28, 38, 42, 47, 51, 56, 76, 93, 103, 116, 122, 126, 132, 136, 140, 144, 150, 154, 163, 167, 171, 184, 191, 200, 204, 209, 216, 221, 243, 248, 258, 262, 267, 272, 287, 291 |
| abstract_inverted_index.two | 130, 161 |
| abstract_inverted_index.use | 108, 242 |
| abstract_inverted_index.CRLB | 127, 175 |
| abstract_inverted_index.NLOS | 210 |
| abstract_inverted_index.case | 223 |
| abstract_inverted_index.fuse | 100 |
| abstract_inverted_index.into | 160 |
| abstract_inverted_index.make | 12 |
| abstract_inverted_index.more | 230, 237 |
| abstract_inverted_index.need | 6 |
| abstract_inverted_index.part | 134, 142 |
| abstract_inverted_index.real | 222 |
| abstract_inverted_index.than | 232 |
| abstract_inverted_index.that | 68, 186, 281 |
| abstract_inverted_index.this | 80 |
| abstract_inverted_index.turn | 34 |
| abstract_inverted_index.when | 235 |
| abstract_inverted_index.CRLBs | 234 |
| abstract_inverted_index.Then, | 30, 121 |
| abstract_inverted_index.Thus, | 215 |
| abstract_inverted_index.based | 91, 198 |
| abstract_inverted_index.bound | 96 |
| abstract_inverted_index.e.g., | 18, 41, 194 |
| abstract_inverted_index.first | 133 |
| abstract_inverted_index.fuses | 187 |
| abstract_inverted_index.guide | 75 |
| abstract_inverted_index.helps | 148 |
| abstract_inverted_index.limit | 181 |
| abstract_inverted_index.lower | 95 |
| abstract_inverted_index.more. | 224 |
| abstract_inverted_index.other | 233 |
| abstract_inverted_index.prior | 58 |
| abstract_inverted_index.state | 45, 164 |
| abstract_inverted_index.these | 31 |
| abstract_inverted_index.which | 98, 147 |
| abstract_inverted_index.(NLOS) | 53 |
| abstract_inverted_index.Fisher | 155 |
| abstract_inverted_index.Markov | 202 |
| abstract_inverted_index.Unlike | 170 |
| abstract_inverted_index.denote | 183 |
| abstract_inverted_index.height | 269 |
| abstract_inverted_index.hidden | 201 |
| abstract_inverted_index.hybrid | 259 |
| abstract_inverted_index.indoor | 252, 292 |
| abstract_inverted_index.layout | 264 |
| abstract_inverted_index.matrix | 157, 165 |
| abstract_inverted_index.method | 86, 207, 228, 245, 283 |
| abstract_inverted_index.model, | 203 |
| abstract_inverted_index.model. | 120 |
| abstract_inverted_index.paper, | 81 |
| abstract_inverted_index.parts: | 131, 162 |
| abstract_inverted_index.second | 141 |
| abstract_inverted_index.sensor | 250 |
| abstract_inverted_index.serves | 296 |
| abstract_inverted_index.system | 3, 77, 89, 119, 185, 302 |
| abstract_inverted_index.target | 273 |
| abstract_inverted_index.vector | 124 |
| abstract_inverted_index.(CRLB), | 97 |
| abstract_inverted_index.analyze | 88, 247 |
| abstract_inverted_index.anchors | 275 |
| abstract_inverted_index.aspects | 10 |
| abstract_inverted_index.between | 271 |
| abstract_inverted_index.design, | 4 |
| abstract_inverted_index.design. | 78 |
| abstract_inverted_index.divided | 159 |
| abstract_inverted_index.effect, | 50 |
| abstract_inverted_index.exploit | 70 |
| abstract_inverted_index.improve | 149 |
| abstract_inverted_index.matrix. | 169 |
| abstract_inverted_index.propose | 83 |
| abstract_inverted_index.related | 57 |
| abstract_inverted_index.results | 218 |
| abstract_inverted_index.sensing | 23 |
| abstract_inverted_index.several | 9 |
| abstract_inverted_index.system. | 254 |
| abstract_inverted_index.systems | 294 |
| abstract_inverted_index.unknown | 123, 238 |
| abstract_inverted_index.vector, | 138, 146 |
| abstract_inverted_index.Bayesian | 196 |
| abstract_inverted_index.Firstly, | 106 |
| abstract_inverted_index.LOS/NLOS | 260 |
| abstract_inverted_index.abstract | 110 |
| abstract_inverted_index.building | 263 |
| abstract_inverted_index.concerns | 33 |
| abstract_inverted_index.consider | 8 |
| abstract_inverted_index.consists | 128 |
| abstract_inverted_index.devices, | 24 |
| abstract_inverted_index.exploits | 284 |
| abstract_inverted_index.factors. | 240 |
| abstract_inverted_index.function | 111 |
| abstract_inverted_index.geometry | 49 |
| abstract_inverted_index.matching | 206 |
| abstract_inverted_index.methods. | 214 |
| abstract_inverted_index.multiple | 71, 188 |
| abstract_inverted_index.position | 44 |
| abstract_inverted_index.proposed | 244 |
| abstract_inverted_index.relative | 268 |
| abstract_inverted_index.scalable | 85 |
| abstract_inverted_index.wireless | 117, 249 |
| abstract_inverted_index.accuracy. | 152 |
| abstract_inverted_index.adaptable | 231 |
| abstract_inverted_index.addition, | 226 |
| abstract_inverted_index.analysis, | 173 |
| abstract_inverted_index.analyzed. | 277 |
| abstract_inverted_index.auxiliary | 21, 145, 168 |
| abstract_inverted_index.available | 20, 72, 288 |
| abstract_inverted_index.channels, | 261 |
| abstract_inverted_index.construct | 64 |
| abstract_inverted_index.efficient | 66 |
| abstract_inverted_index.equipment | 25 |
| abstract_inverted_index.estimated | 137 |
| abstract_inverted_index.framework | 67 |
| abstract_inverted_index.important | 239 |
| abstract_inverted_index.indicator | 299 |
| abstract_inverted_index.influence | 256 |
| abstract_inverted_index.necessary | 62 |
| abstract_inverted_index.practical | 1, 32, 179, 301 |
| abstract_inverted_index.problems, | 40 |
| abstract_inverted_index.recursive | 195 |
| abstract_inverted_index.represent | 113 |
| abstract_inverted_index.technical | 39 |
| abstract_inverted_index.deployment | 26 |
| abstract_inverted_index.estimation | 151, 197 |
| abstract_inverted_index.mitigation | 213 |
| abstract_inverted_index.sequential | 43 |
| abstract_inverted_index.adaptively. | 105 |
| abstract_inverted_index.approaching | 220 |
| abstract_inverted_index.complicated | 192 |
| abstract_inverted_index.considering | 236 |
| abstract_inverted_index.differences | 270 |
| abstract_inverted_index.efficiently | 15 |
| abstract_inverted_index.evaluation. | 303 |
| abstract_inverted_index.fundamental | 180 |
| abstract_inverted_index.information | 73, 104, 156, 189, 265, 289 |
| abstract_inverted_index.performance | 90 |
| abstract_inverted_index.positioning | 14 |
| abstract_inverted_index.researchers | 5 |
| abstract_inverted_index.theoretical | 172, 217 |
| abstract_inverted_index.Accordingly, | 153 |
| abstract_inverted_index.demonstrated | 280 |
| abstract_inverted_index.effectively, | 17 |
| abstract_inverted_index.environment, | 193 |
| abstract_inverted_index.environment. | 29 |
| abstract_inverted_index.information, | 22 |
| abstract_inverted_index.information. | 59 |
| abstract_inverted_index.localization | 2, 118, 253, 293 |
| abstract_inverted_index.propagation, | 46 |
| abstract_inverted_index.Cramér–Rao | 94 |
| abstract_inverted_index.network-based | 251 |
| abstract_inverted_index.target-anchor | 48 |
| abstract_inverted_index.identification | 54, 211 |
| abstract_inverted_index.Non-line-of-sight | 52 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5100637082 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I158809036 |
| citation_normalized_percentile.value | 0.71264947 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |