Practicing Meta-Analytics with Rectification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/publications13010002
This article demonstrates the necessity of assessing homogeneity in meta-analyses using the Higgins method. The researchers realize the importance of assessing homogeneity in meta-analytic work. However, a significant issue with the Higgins method has been identified. In this article, we explain the nature of this problem and propose solutions to address it. Our narrative in this article is to point out the problem, analyze it, and present it well. A prerequisite to check the consistency of findings in comparable studies in meta-analyses is that the studies should be homogeneous, not heterogeneous. The Higgins I2 score, a version of the Cochran Q value, is commonly used to assess heterogeneity. The Higgins score is an improvement in the Q value. However, there is a problem with Higgins score statistically. The Higgins score is supposed to follow a Chi-squared distribution, but it does not do so because the Chi-squared distribution becomes invalid once the Q score is less than the degrees of freedom. This problem was recently rectified using an alternative method (S2 score). Using this method, we examined 14 published articles representing 133 datasets and observed that many studies declared homogeneous by the Higgins method were, in fact, heterogeneous. This article urges the research community to be cautious in making inferences using the Higgins method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/publications13010002
- https://www.mdpi.com/2304-6775/13/1/2/pdf?version=1735807453
- OA Status
- gold
- Cited By
- 1
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405999845
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405999845Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/publications13010002Digital Object Identifier
- Title
-
Practicing Meta-Analytics with RectificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-02Full publication date if available
- Authors
-
Ramalingam Shanmugam, Karan P. SinghList of authors in order
- Landing page
-
https://doi.org/10.3390/publications13010002Publisher landing page
- PDF URL
-
https://www.mdpi.com/2304-6775/13/1/2/pdf?version=1735807453Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2304-6775/13/1/2/pdf?version=1735807453Direct OA link when available
- Concepts
-
Rectification, Analytics, Computer science, Data science, Physics, Quantum mechanics, Power (physics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405999845 |
|---|---|
| doi | https://doi.org/10.3390/publications13010002 |
| ids.doi | https://doi.org/10.3390/publications13010002 |
| ids.openalex | https://openalex.org/W4405999845 |
| fwci | 4.81974515 |
| type | article |
| title | Practicing Meta-Analytics with Rectification |
| biblio.issue | 1 |
| biblio.volume | 13 |
| biblio.last_page | 2 |
| biblio.first_page | 2 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8708000183105469 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10799 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8610000014305115 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Data Visualization and Analytics |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.8560000061988831 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1515 |
| apc_paid.value | 1400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1515 |
| concepts[0].id | https://openalex.org/C50942859 |
| concepts[0].level | 3 |
| concepts[0].score | 0.714361310005188 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4967193 |
| concepts[0].display_name | Rectification |
| concepts[1].id | https://openalex.org/C79158427 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6758749485015869 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[1].display_name | Analytics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.44544142484664917 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.2968907356262207 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.1224883496761322 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| concepts[5].id | https://openalex.org/C62520636 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[5].display_name | Quantum mechanics |
| concepts[6].id | https://openalex.org/C163258240 |
| concepts[6].level | 2 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[6].display_name | Power (physics) |
| keywords[0].id | https://openalex.org/keywords/rectification |
| keywords[0].score | 0.714361310005188 |
| keywords[0].display_name | Rectification |
| keywords[1].id | https://openalex.org/keywords/analytics |
| keywords[1].score | 0.6758749485015869 |
| keywords[1].display_name | Analytics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.44544142484664917 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.2968907356262207 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.1224883496761322 |
| keywords[4].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3390/publications13010002 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2738007992 |
| locations[0].source.issn | 2304-6775 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2304-6775 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Publications |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2304-6775/13/1/2/pdf?version=1735807453 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Publications |
| locations[0].landing_page_url | https://doi.org/10.3390/publications13010002 |
| locations[1].id | pmh:oai:doaj.org/article:2fcdb8e2f0bb4faa85b397faf47df4b6 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Publications, Vol 13, Iss 1, p 2 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/2fcdb8e2f0bb4faa85b397faf47df4b6 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5084561111 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3388-1014 |
| authorships[0].author.display_name | Ramalingam Shanmugam |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I13511017 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Health Administration, Texas State University, San Marcos, TX 78666, USA |
| authorships[0].institutions[0].id | https://openalex.org/I13511017 |
| authorships[0].institutions[0].ror | https://ror.org/05h9q1g27 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I13511017 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Texas State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ramalingam Shanmugam |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Health Administration, Texas State University, San Marcos, TX 78666, USA |
| authorships[1].author.id | https://openalex.org/A5043999741 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1841-846X |
| authorships[1].author.display_name | Karan P. Singh |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I221716585, https://openalex.org/I90436673 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Epidemiology and Biostatistics, The University of Texas at Tyler Health Science Center, School of Medicine, Tyler, TX 75708, USA |
| authorships[1].institutions[0].id | https://openalex.org/I90436673 |
| authorships[1].institutions[0].ror | https://ror.org/01sps7q28 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I90436673 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | The University of Texas Health Science Center at Tyler |
| authorships[1].institutions[1].id | https://openalex.org/I221716585 |
| authorships[1].institutions[1].ror | https://ror.org/01azfw069 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I221716585 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | The University of Texas at Tyler |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Karan P. Singh |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Epidemiology and Biostatistics, The University of Texas at Tyler Health Science Center, School of Medicine, Tyler, TX 75708, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2304-6775/13/1/2/pdf?version=1735807453 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Practicing Meta-Analytics with Rectification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8708000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2355499516, https://openalex.org/W3174480258, https://openalex.org/W3210974833, https://openalex.org/W2599000612, https://openalex.org/W2811475781, https://openalex.org/W2094246381, https://openalex.org/W2361137193 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/publications13010002 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2738007992 |
| best_oa_location.source.issn | 2304-6775 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2304-6775 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Publications |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2304-6775/13/1/2/pdf?version=1735807453 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Publications |
| best_oa_location.landing_page_url | https://doi.org/10.3390/publications13010002 |
| primary_location.id | doi:10.3390/publications13010002 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2738007992 |
| primary_location.source.issn | 2304-6775 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2304-6775 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Publications |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2304-6775/13/1/2/pdf?version=1735807453 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Publications |
| primary_location.landing_page_url | https://doi.org/10.3390/publications13010002 |
| publication_date | 2025-01-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4319982070, https://openalex.org/W3209259781, https://openalex.org/W4402228014, https://openalex.org/W4377967813, https://openalex.org/W4401697403, https://openalex.org/W4390669114, https://openalex.org/W4391171225, https://openalex.org/W4399073420, https://openalex.org/W1554815734, https://openalex.org/W4313587906, https://openalex.org/W3210697598, https://openalex.org/W4221029000, https://openalex.org/W4384927088, https://openalex.org/W2125435699, https://openalex.org/W3126598951, https://openalex.org/W4390581988, https://openalex.org/W4384922618, https://openalex.org/W3097065825, https://openalex.org/W4401076772, https://openalex.org/W3204242946, https://openalex.org/W4385851799, https://openalex.org/W4391135835, https://openalex.org/W4220795102, https://openalex.org/W4391912799, https://openalex.org/W4384009152, https://openalex.org/W4390667832, https://openalex.org/W4377091029, https://openalex.org/W4403772046, https://openalex.org/W6794240678, https://openalex.org/W4386757595, https://openalex.org/W3155193243 |
| referenced_works_count | 31 |
| abstract_inverted_index.A | 69 |
| abstract_inverted_index.Q | 100, 116, 151 |
| abstract_inverted_index.a | 26, 95, 121, 134 |
| abstract_inverted_index.14 | 176 |
| abstract_inverted_index.I2 | 93 |
| abstract_inverted_index.In | 36 |
| abstract_inverted_index.an | 112, 166 |
| abstract_inverted_index.be | 87, 204 |
| abstract_inverted_index.by | 189 |
| abstract_inverted_index.do | 141 |
| abstract_inverted_index.in | 8, 22, 54, 77, 80, 114, 194, 206 |
| abstract_inverted_index.is | 57, 82, 102, 111, 120, 130, 153 |
| abstract_inverted_index.it | 67, 138 |
| abstract_inverted_index.of | 5, 19, 43, 75, 97, 158 |
| abstract_inverted_index.so | 142 |
| abstract_inverted_index.to | 49, 58, 71, 105, 132, 203 |
| abstract_inverted_index.we | 39, 174 |
| abstract_inverted_index.(S2 | 169 |
| abstract_inverted_index.133 | 180 |
| abstract_inverted_index.Our | 52 |
| abstract_inverted_index.The | 14, 91, 108, 127 |
| abstract_inverted_index.and | 46, 65, 182 |
| abstract_inverted_index.but | 137 |
| abstract_inverted_index.has | 33 |
| abstract_inverted_index.it, | 64 |
| abstract_inverted_index.it. | 51 |
| abstract_inverted_index.not | 89, 140 |
| abstract_inverted_index.out | 60 |
| abstract_inverted_index.the | 3, 11, 17, 30, 41, 61, 73, 84, 98, 115, 144, 150, 156, 190, 200, 210 |
| abstract_inverted_index.was | 162 |
| abstract_inverted_index.This | 0, 160, 197 |
| abstract_inverted_index.been | 34 |
| abstract_inverted_index.does | 139 |
| abstract_inverted_index.less | 154 |
| abstract_inverted_index.many | 185 |
| abstract_inverted_index.once | 149 |
| abstract_inverted_index.than | 155 |
| abstract_inverted_index.that | 83, 184 |
| abstract_inverted_index.this | 37, 44, 55, 172 |
| abstract_inverted_index.used | 104 |
| abstract_inverted_index.with | 29, 123 |
| abstract_inverted_index.Using | 171 |
| abstract_inverted_index.check | 72 |
| abstract_inverted_index.fact, | 195 |
| abstract_inverted_index.issue | 28 |
| abstract_inverted_index.point | 59 |
| abstract_inverted_index.score | 110, 125, 129, 152 |
| abstract_inverted_index.there | 119 |
| abstract_inverted_index.urges | 199 |
| abstract_inverted_index.using | 10, 165, 209 |
| abstract_inverted_index.well. | 68 |
| abstract_inverted_index.were, | 193 |
| abstract_inverted_index.work. | 24 |
| abstract_inverted_index.assess | 106 |
| abstract_inverted_index.follow | 133 |
| abstract_inverted_index.making | 207 |
| abstract_inverted_index.method | 32, 168, 192 |
| abstract_inverted_index.nature | 42 |
| abstract_inverted_index.score, | 94 |
| abstract_inverted_index.should | 86 |
| abstract_inverted_index.value, | 101 |
| abstract_inverted_index.value. | 117 |
| abstract_inverted_index.Cochran | 99 |
| abstract_inverted_index.Higgins | 12, 31, 92, 109, 124, 128, 191, 211 |
| abstract_inverted_index.address | 50 |
| abstract_inverted_index.analyze | 63 |
| abstract_inverted_index.article | 1, 56, 198 |
| abstract_inverted_index.because | 143 |
| abstract_inverted_index.becomes | 147 |
| abstract_inverted_index.degrees | 157 |
| abstract_inverted_index.explain | 40 |
| abstract_inverted_index.invalid | 148 |
| abstract_inverted_index.method, | 173 |
| abstract_inverted_index.method. | 13, 212 |
| abstract_inverted_index.present | 66 |
| abstract_inverted_index.problem | 45, 122, 161 |
| abstract_inverted_index.propose | 47 |
| abstract_inverted_index.realize | 16 |
| abstract_inverted_index.score). | 170 |
| abstract_inverted_index.studies | 79, 85, 186 |
| abstract_inverted_index.version | 96 |
| abstract_inverted_index.However, | 25, 118 |
| abstract_inverted_index.article, | 38 |
| abstract_inverted_index.articles | 178 |
| abstract_inverted_index.cautious | 205 |
| abstract_inverted_index.commonly | 103 |
| abstract_inverted_index.datasets | 181 |
| abstract_inverted_index.declared | 187 |
| abstract_inverted_index.examined | 175 |
| abstract_inverted_index.findings | 76 |
| abstract_inverted_index.freedom. | 159 |
| abstract_inverted_index.observed | 183 |
| abstract_inverted_index.problem, | 62 |
| abstract_inverted_index.recently | 163 |
| abstract_inverted_index.research | 201 |
| abstract_inverted_index.supposed | 131 |
| abstract_inverted_index.assessing | 6, 20 |
| abstract_inverted_index.community | 202 |
| abstract_inverted_index.narrative | 53 |
| abstract_inverted_index.necessity | 4 |
| abstract_inverted_index.published | 177 |
| abstract_inverted_index.rectified | 164 |
| abstract_inverted_index.solutions | 48 |
| abstract_inverted_index.comparable | 78 |
| abstract_inverted_index.importance | 18 |
| abstract_inverted_index.inferences | 208 |
| abstract_inverted_index.Chi-squared | 135, 145 |
| abstract_inverted_index.alternative | 167 |
| abstract_inverted_index.consistency | 74 |
| abstract_inverted_index.homogeneity | 7, 21 |
| abstract_inverted_index.homogeneous | 188 |
| abstract_inverted_index.identified. | 35 |
| abstract_inverted_index.improvement | 113 |
| abstract_inverted_index.researchers | 15 |
| abstract_inverted_index.significant | 27 |
| abstract_inverted_index.demonstrates | 2 |
| abstract_inverted_index.distribution | 146 |
| abstract_inverted_index.homogeneous, | 88 |
| abstract_inverted_index.prerequisite | 70 |
| abstract_inverted_index.representing | 179 |
| abstract_inverted_index.distribution, | 136 |
| abstract_inverted_index.meta-analyses | 9, 81 |
| abstract_inverted_index.meta-analytic | 23 |
| abstract_inverted_index.heterogeneity. | 107 |
| abstract_inverted_index.heterogeneous. | 90, 196 |
| abstract_inverted_index.statistically. | 126 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5043999741 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I221716585, https://openalex.org/I90436673 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.800000011920929 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.92353313 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |