Predicting Acute Respiratory Infection Risk in Under–Five Children Using Machine Learning: Evidence from Bangladesh Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-7081278/v1
Background Children’s immune systems are particularly vulnerable to infections. In developing countries, malnutrition, diarrheal diseases, and acute respiratory infections (ARI) remain leading causes of illness and mortality among children. This study applied multiple machine learning (ML) techniques to identify key risk factors associated with ARI symptoms in Bangladesh. Methods Secondary data from the Bangladesh Demographic and Health Survey (BDHS) 2022 were analyzed to assess ARI risk factors. Feature selection was conducted using the SHAP algorithm, and six ML classifiers were trained and evaluated with 10-fold cross-validation. Model performance was measured using accuracy, sensitivity, specificity, precision, F1-score, G-mean, and ROC AUC. Results Among the classifiers, the Decision Tree (DT) model achieved the highest performance across several metrics, with accuracy, sensitivity, specificity, precision, F1-score, and G-mean all at 0.81, and an ROC AUC of 0.88. Random Forest (RF) and AdaBoost (AdaB) also demonstrated strong performance, with RF showing an accuracy of 0.79 and ROC AUC of 0.89, and AdaB achieving an accuracy of 0.78 and ROC AUC of 0.86. Key predictive features included fever, age groups, geographic division, and area of residence. Conclusions The Decision Tree classifier outperformed other ML models in predicting ARI risk among children under five in Bangladesh, closely followed by Random Forest and AdaBoost. These findings highlight the potential of ML approaches to support targeted interventions by identifying critical risk factors. Government strategies should focus on early detection, improved treatment of fever, and enhanced household conditions to mitigate ARI risk in young children.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-7081278/v1
- https://www.researchsquare.com/article/rs-7081278/latest.pdf
- OA Status
- gold
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412185566
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412185566Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-7081278/v1Digital Object Identifier
- Title
-
Predicting Acute Respiratory Infection Risk in Under–Five Children Using Machine Learning: Evidence from BangladeshWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-11Full publication date if available
- Authors
-
Sanjib Kumar Sharma, Md. Yusuf Hossain Ador, Md. Rokunuzzaman, Md. Kamruzzaman, Md. Jakir Hossain, MA Hossen, Futanta ChakmaList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-7081278/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-7081278/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-7081278/latest.pdfDirect OA link when available
- Concepts
-
Respiratory infection, Respiratory system, Medicine, Intensive care medicine, Computer science, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412185566 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-7081278/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-7081278/v1 |
| ids.openalex | https://openalex.org/W4412185566 |
| fwci | 0.0 |
| type | preprint |
| title | Predicting Acute Respiratory Infection Risk in Under–Five Children Using Machine Learning: Evidence from Bangladesh |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9613000154495239 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2993183539 |
| concepts[0].level | 3 |
| concepts[0].score | 0.592150092124939 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q754447 |
| concepts[0].display_name | Respiratory infection |
| concepts[1].id | https://openalex.org/C534529494 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5832418203353882 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7891 |
| concepts[1].display_name | Respiratory system |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4396221339702606 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C177713679 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3245292901992798 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q679690 |
| concepts[3].display_name | Intensive care medicine |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3232601284980774 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C126322002 |
| concepts[5].level | 1 |
| concepts[5].score | 0.21860960125923157 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[5].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/respiratory-infection |
| keywords[0].score | 0.592150092124939 |
| keywords[0].display_name | Respiratory infection |
| keywords[1].id | https://openalex.org/keywords/respiratory-system |
| keywords[1].score | 0.5832418203353882 |
| keywords[1].display_name | Respiratory system |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.4396221339702606 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/intensive-care-medicine |
| keywords[3].score | 0.3245292901992798 |
| keywords[3].display_name | Intensive care medicine |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.3232601284980774 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/internal-medicine |
| keywords[5].score | 0.21860960125923157 |
| keywords[5].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-7081278/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-7081278/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-7081278/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5026138818 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8392-8028 |
| authorships[0].author.display_name | Sanjib Kumar Sharma |
| authorships[0].affiliations[0].raw_affiliation_string | Jagannath University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Samrat Kumar Dev Sharma |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Jagannath University |
| authorships[1].author.id | https://openalex.org/A5118906715 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Md. Yusuf Hossain Ador |
| authorships[1].affiliations[0].raw_affiliation_string | Jagannath University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Md. Yusuf Hossain Ador |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Jagannath University |
| authorships[2].author.id | https://openalex.org/A5019804932 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9715-4652 |
| authorships[2].author.display_name | Md. Rokunuzzaman |
| authorships[2].affiliations[0].raw_affiliation_string | Jagannath University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Md. Rokunuzzaman |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Jagannath University |
| authorships[3].author.id | https://openalex.org/A5101825957 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5138-2182 |
| authorships[3].author.display_name | Md. Kamruzzaman |
| authorships[3].affiliations[0].raw_affiliation_string | Jagannath University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Md. Kamruzzaman |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Jagannath University |
| authorships[4].author.id | https://openalex.org/A5069067779 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1076-4867 |
| authorships[4].author.display_name | Md. Jakir Hossain |
| authorships[4].affiliations[0].raw_affiliation_string | Jagannath University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jakir Hossain |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Jagannath University |
| authorships[5].author.id | https://openalex.org/A5109696119 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | MA Hossen |
| authorships[5].affiliations[0].raw_affiliation_string | Jagannath University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Mahmud Hossen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Jagannath University |
| authorships[6].author.id | https://openalex.org/A5118906716 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Futanta Chakma |
| authorships[6].affiliations[0].raw_affiliation_string | Jagannath University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Futanta Chakma |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Jagannath University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-7081278/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting Acute Respiratory Infection Risk in Under–Five Children Using Machine Learning: Evidence from Bangladesh |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9613000154495239 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2381787193, https://openalex.org/W2587500170, https://openalex.org/W4213282205, https://openalex.org/W3122505613, https://openalex.org/W2417793164, https://openalex.org/W4406923391, https://openalex.org/W1976955816, https://openalex.org/W3122157180 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-7081278/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-7081278/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7081278/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-7081278/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-7081278/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7081278/v1 |
| publication_date | 2025-07-11 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3126558599, https://openalex.org/W2105131328, https://openalex.org/W3197598598, https://openalex.org/W2014706197, https://openalex.org/W2157404218, https://openalex.org/W2144043502, https://openalex.org/W2148143831, https://openalex.org/W3109369928, https://openalex.org/W1964119040, https://openalex.org/W1546561866, https://openalex.org/W4309083007, https://openalex.org/W2809965994, https://openalex.org/W7073896092, https://openalex.org/W4236654192 |
| referenced_works_count | 14 |
| abstract_inverted_index.In | 10 |
| abstract_inverted_index.ML | 78, 188, 213 |
| abstract_inverted_index.RF | 145 |
| abstract_inverted_index.an | 129, 147, 159 |
| abstract_inverted_index.at | 126 |
| abstract_inverted_index.by | 202, 219 |
| abstract_inverted_index.in | 47, 190, 198, 243 |
| abstract_inverted_index.of | 24, 132, 149, 154, 161, 166, 179, 212, 233 |
| abstract_inverted_index.on | 228 |
| abstract_inverted_index.to | 8, 38, 63, 215, 239 |
| abstract_inverted_index.ARI | 45, 65, 192, 241 |
| abstract_inverted_index.AUC | 131, 153, 165 |
| abstract_inverted_index.Key | 168 |
| abstract_inverted_index.ROC | 99, 130, 152, 164 |
| abstract_inverted_index.The | 182 |
| abstract_inverted_index.age | 173 |
| abstract_inverted_index.all | 125 |
| abstract_inverted_index.and | 16, 26, 56, 76, 82, 98, 123, 128, 137, 151, 156, 163, 177, 205, 235 |
| abstract_inverted_index.are | 5 |
| abstract_inverted_index.key | 40 |
| abstract_inverted_index.six | 77 |
| abstract_inverted_index.the | 53, 73, 103, 105, 111, 210 |
| abstract_inverted_index.was | 70, 89 |
| abstract_inverted_index.(DT) | 108 |
| abstract_inverted_index.(ML) | 36 |
| abstract_inverted_index.(RF) | 136 |
| abstract_inverted_index.0.78 | 162 |
| abstract_inverted_index.0.79 | 150 |
| abstract_inverted_index.2022 | 60 |
| abstract_inverted_index.AUC. | 100 |
| abstract_inverted_index.AdaB | 157 |
| abstract_inverted_index.SHAP | 74 |
| abstract_inverted_index.This | 30 |
| abstract_inverted_index.Tree | 107, 184 |
| abstract_inverted_index.also | 140 |
| abstract_inverted_index.area | 178 |
| abstract_inverted_index.data | 51 |
| abstract_inverted_index.five | 197 |
| abstract_inverted_index.from | 52 |
| abstract_inverted_index.risk | 41, 66, 193, 222, 242 |
| abstract_inverted_index.were | 61, 80 |
| abstract_inverted_index.with | 44, 84, 117, 144 |
| abstract_inverted_index.(ARI) | 20 |
| abstract_inverted_index.0.81, | 127 |
| abstract_inverted_index.0.86. | 167 |
| abstract_inverted_index.0.88. | 133 |
| abstract_inverted_index.0.89, | 155 |
| abstract_inverted_index.Among | 102 |
| abstract_inverted_index.Model | 87 |
| abstract_inverted_index.These | 207 |
| abstract_inverted_index.acute | 17 |
| abstract_inverted_index.among | 28, 194 |
| abstract_inverted_index.early | 229 |
| abstract_inverted_index.focus | 227 |
| abstract_inverted_index.model | 109 |
| abstract_inverted_index.other | 187 |
| abstract_inverted_index.study | 31 |
| abstract_inverted_index.under | 196 |
| abstract_inverted_index.using | 72, 91 |
| abstract_inverted_index.young | 244 |
| abstract_inverted_index.(AdaB) | 139 |
| abstract_inverted_index.(BDHS) | 59 |
| abstract_inverted_index.Forest | 135, 204 |
| abstract_inverted_index.G-mean | 124 |
| abstract_inverted_index.Health | 57 |
| abstract_inverted_index.Random | 134, 203 |
| abstract_inverted_index.Survey | 58 |
| abstract_inverted_index.across | 114 |
| abstract_inverted_index.assess | 64 |
| abstract_inverted_index.causes | 23 |
| abstract_inverted_index.fever, | 172, 234 |
| abstract_inverted_index.immune | 3 |
| abstract_inverted_index.models | 189 |
| abstract_inverted_index.remain | 21 |
| abstract_inverted_index.should | 226 |
| abstract_inverted_index.strong | 142 |
| abstract_inverted_index.10-fold | 85 |
| abstract_inverted_index.Feature | 68 |
| abstract_inverted_index.G-mean, | 97 |
| abstract_inverted_index.Methods | 49 |
| abstract_inverted_index.Results | 101 |
| abstract_inverted_index.applied | 32 |
| abstract_inverted_index.closely | 200 |
| abstract_inverted_index.factors | 42 |
| abstract_inverted_index.groups, | 174 |
| abstract_inverted_index.highest | 112 |
| abstract_inverted_index.illness | 25 |
| abstract_inverted_index.leading | 22 |
| abstract_inverted_index.machine | 34 |
| abstract_inverted_index.several | 115 |
| abstract_inverted_index.showing | 146 |
| abstract_inverted_index.support | 216 |
| abstract_inverted_index.systems | 4 |
| abstract_inverted_index.trained | 81 |
| abstract_inverted_index.AdaBoost | 138 |
| abstract_inverted_index.Decision | 106, 183 |
| abstract_inverted_index.accuracy | 148, 160 |
| abstract_inverted_index.achieved | 110 |
| abstract_inverted_index.analyzed | 62 |
| abstract_inverted_index.children | 195 |
| abstract_inverted_index.critical | 221 |
| abstract_inverted_index.enhanced | 236 |
| abstract_inverted_index.factors. | 67, 223 |
| abstract_inverted_index.features | 170 |
| abstract_inverted_index.findings | 208 |
| abstract_inverted_index.followed | 201 |
| abstract_inverted_index.identify | 39 |
| abstract_inverted_index.improved | 231 |
| abstract_inverted_index.included | 171 |
| abstract_inverted_index.learning | 35 |
| abstract_inverted_index.measured | 90 |
| abstract_inverted_index.metrics, | 116 |
| abstract_inverted_index.mitigate | 240 |
| abstract_inverted_index.multiple | 33 |
| abstract_inverted_index.symptoms | 46 |
| abstract_inverted_index.targeted | 217 |
| abstract_inverted_index.AdaBoost. | 206 |
| abstract_inverted_index.F1-score, | 96, 122 |
| abstract_inverted_index.Secondary | 50 |
| abstract_inverted_index.accuracy, | 92, 118 |
| abstract_inverted_index.achieving | 158 |
| abstract_inverted_index.children. | 29, 245 |
| abstract_inverted_index.conducted | 71 |
| abstract_inverted_index.diarrheal | 14 |
| abstract_inverted_index.diseases, | 15 |
| abstract_inverted_index.division, | 176 |
| abstract_inverted_index.evaluated | 83 |
| abstract_inverted_index.highlight | 209 |
| abstract_inverted_index.household | 237 |
| abstract_inverted_index.mortality | 27 |
| abstract_inverted_index.potential | 211 |
| abstract_inverted_index.selection | 69 |
| abstract_inverted_index.treatment | 232 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Bangladesh | 54 |
| abstract_inverted_index.Government | 224 |
| abstract_inverted_index.algorithm, | 75 |
| abstract_inverted_index.approaches | 214 |
| abstract_inverted_index.associated | 43 |
| abstract_inverted_index.classifier | 185 |
| abstract_inverted_index.conditions | 238 |
| abstract_inverted_index.countries, | 12 |
| abstract_inverted_index.detection, | 230 |
| abstract_inverted_index.developing | 11 |
| abstract_inverted_index.geographic | 175 |
| abstract_inverted_index.infections | 19 |
| abstract_inverted_index.precision, | 95, 121 |
| abstract_inverted_index.predicting | 191 |
| abstract_inverted_index.predictive | 169 |
| abstract_inverted_index.residence. | 180 |
| abstract_inverted_index.strategies | 225 |
| abstract_inverted_index.techniques | 37 |
| abstract_inverted_index.vulnerable | 7 |
| abstract_inverted_index.Bangladesh, | 199 |
| abstract_inverted_index.Bangladesh. | 48 |
| abstract_inverted_index.Conclusions | 181 |
| abstract_inverted_index.Demographic | 55 |
| abstract_inverted_index.classifiers | 79 |
| abstract_inverted_index.identifying | 220 |
| abstract_inverted_index.infections. | 9 |
| abstract_inverted_index.performance | 88, 113 |
| abstract_inverted_index.respiratory | 18 |
| abstract_inverted_index.Children’s | 2 |
| abstract_inverted_index.classifiers, | 104 |
| abstract_inverted_index.demonstrated | 141 |
| abstract_inverted_index.outperformed | 186 |
| abstract_inverted_index.particularly | 6 |
| abstract_inverted_index.performance, | 143 |
| abstract_inverted_index.sensitivity, | 93, 119 |
| abstract_inverted_index.specificity, | 94, 120 |
| abstract_inverted_index.interventions | 218 |
| abstract_inverted_index.malnutrition, | 13 |
| abstract_inverted_index.cross-validation. | 86 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.37717024 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |