Predicting agranulocytosis in patients treated with clozapine – development and validation of a machine learning algorithm based on 5,550 patients Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.03.07.25323575
Background To prevent clozapine-induced agranulocytosis (CIA), patients’ white blood cell counts are closely monitored, with treatment stopped if the absolute neutrophil count (ANC) drops below 1.5×10 9 /L. While effective, this approach has a high rate of false positives. This study aimed to develop a machine learning (ML) decision-making tool to better predict CIA risk using pattern-based criteria (two consecutive ANCs <0.5×10 9 /L over ≥2 days). Methods Using a ML technique [gradient-boosted decision trees (GDBT)] we analysed clinical data from 5,550 UK patients treated with clozapine: 2,190 controls with no history of neutropenia and 3,360 cases with at least one neutropenic event, including 358 with pattern-based CIA. Using haematological and demographic data from the current and three prior time windows, predictive models estimated the likelihood of CIA across four time-windows: 1 week, 2 weeks, 1 month, and 3 months respectively in advance. Model performance was evaluated using area under the receiver operator characteristic curve (AUROC), sensitivity, and specificity. We developed another model to predict baseline risk of CIA and compared performance with genetic tests. Explainability analyses identified key features influencing predictions. Outcomes GDBT models demonstrated strong predictive performance: 1-week forecasting horizon: AUROC 0.99 [95% confidence interval (CI): 0.99–0.99]; 2 weeks: AUROC 0.97 [95% CI: 0.95–0.99]; 1 month: AUROC 0.91 [95% CI: 0.86–0.94]; 3 months: AUROC 0.90 [95% CI: 0.88–0.92]. The baseline model achieved better performance than current genetic tests, with high specificity and sensitivity at varying thresholds. Key discriminative features for CIA included age and baseline haematological values for longer forecasting horizons (1 and 3 months) and current haematological values and treatment duration for shorter horizons (1 and 2 weeks). Interpretation ML models reliably predict CIA occurrence across short- and long-term horizons, potentially reducing the number of false positives with the current system. Implementation of ML models can reduce unnecessary treatment interruptions and the need for additional blood tests due to suspected agranulocytosis. Funding The study did not receive direct funding. Research in context Evidence before this study The only antipsychotic that is effective for treatmentresistant psychosis is clozapine. Tragically, many patients with treatment-resistant psychosis never receive clozapine treatment or receive it many years after “treatmentresistance”. A prominent reason for this is blood tests that are required to detect potential clozapine-induced agranulocytosis (CIA). Despite monitoring being effective, several patients have had to stop clozapine unnecessarily because of the current haematological criteria for discontinuation. In many of these patients, this has resulted in poor clinical and social outcomes. Additionally, many cases of agranulocytosis are identified late under the existing monitoring protocols. At present, there is no reliable way of predicting clozapine-induced agranulocytosis (CIA). Added value of this study This is the first study to propose that a machine-learning decision tool can reliably predict CIA before it occurs in both the short term and long term. 0.1. Implications of all the available evidence Implementation of machine learning algorithms allow prediction of agranulocytosis so that clozapine can be appropriate stopped before it occurs. The algorithm can also prevent unnecessary stopping of clozapine and additional blood testing that is related to spurious blood results.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.03.07.25323575
- OA Status
- green
- Cited By
- 1
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408317132
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408317132Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.03.07.25323575Digital Object Identifier
- Title
-
Predicting agranulocytosis in patients treated with clozapine – development and validation of a machine learning algorithm based on 5,550 patientsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-10Full publication date if available
- Authors
-
Ebenezer Oloyede, Juan Miguel Lopez Alcaraz, Eromona Whiskey, Olubanké Dzahini, Dan W. Joyce, Sukhwinder S. Shergill, Nils Strodthoff, David Taylor, Christian BachmannList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.03.07.25323575Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1101/2025.03.07.25323575Direct OA link when available
- Concepts
-
Clozapine, Computer science, Algorithm, Medicine, Machine learning, Artificial intelligence, Schizophrenia (object-oriented programming), Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408317132 |
|---|---|
| doi | https://doi.org/10.1101/2025.03.07.25323575 |
| ids.doi | https://doi.org/10.1101/2025.03.07.25323575 |
| ids.openalex | https://openalex.org/W4408317132 |
| fwci | 4.71320923 |
| type | preprint |
| title | Predicting agranulocytosis in patients treated with clozapine – development and validation of a machine learning algorithm based on 5,550 patients |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10023 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.7128999829292297 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2738 |
| topics[0].subfield.display_name | Psychiatry and Mental health |
| topics[0].display_name | Schizophrenia research and treatment |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780864610 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7294907569885254 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q221361 |
| concepts[0].display_name | Clozapine |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4971924126148224 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.46958962082862854 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C71924100 |
| concepts[3].level | 0 |
| concepts[3].score | 0.42757177352905273 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[3].display_name | Medicine |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.40685877203941345 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3642696738243103 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2776412080 |
| concepts[6].level | 2 |
| concepts[6].score | 0.25312307476997375 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7431605 |
| concepts[6].display_name | Schizophrenia (object-oriented programming) |
| concepts[7].id | https://openalex.org/C199360897 |
| concepts[7].level | 1 |
| concepts[7].score | 0.1004883348941803 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[7].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/clozapine |
| keywords[0].score | 0.7294907569885254 |
| keywords[0].display_name | Clozapine |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4971924126148224 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.46958962082862854 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/medicine |
| keywords[3].score | 0.42757177352905273 |
| keywords[3].display_name | Medicine |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.40685877203941345 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3642696738243103 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/schizophrenia |
| keywords[6].score | 0.25312307476997375 |
| keywords[6].display_name | Schizophrenia (object-oriented programming) |
| keywords[7].id | https://openalex.org/keywords/programming-language |
| keywords[7].score | 0.1004883348941803 |
| keywords[7].display_name | Programming language |
| language | en |
| locations[0].id | doi:10.1101/2025.03.07.25323575 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.03.07.25323575 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5070414290 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1352-4017 |
| authorships[0].author.display_name | Ebenezer Oloyede |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ebenezer Oloyede |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5043392888 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Juan Miguel Lopez Alcaraz |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Juan Miguel Lopez Alcaraz |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5088181811 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6146-0073 |
| authorships[2].author.display_name | Eromona Whiskey |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Eromona Whiskey |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5079077055 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3878-2143 |
| authorships[3].author.display_name | Olubanké Dzahini |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Olubanke Dzahini |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5002709335 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Dan W. Joyce |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dan W Joyce |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5042502770 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4928-9100 |
| authorships[5].author.display_name | Sukhwinder S. Shergill |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sukhi Shergill |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5034797797 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4447-0162 |
| authorships[6].author.display_name | Nils Strodthoff |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Nils Strodthoff |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5109022789 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | David Taylor |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | David Taylor |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5069527339 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-7526-2660 |
| authorships[8].author.display_name | Christian Bachmann |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Christian J. Bachmann |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1101/2025.03.07.25323575 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting agranulocytosis in patients treated with clozapine – development and validation of a machine learning algorithm based on 5,550 patients |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10023 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.7128999829292297 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2738 |
| primary_topic.subfield.display_name | Psychiatry and Mental health |
| primary_topic.display_name | Schizophrenia research and treatment |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.03.07.25323575 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.03.07.25323575 |
| primary_location.id | doi:10.1101/2025.03.07.25323575 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.03.07.25323575 |
| publication_date | 2025-03-10 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2085360366, https://openalex.org/W2893591395, https://openalex.org/W4283781320, https://openalex.org/W4310641959, https://openalex.org/W3205876948, https://openalex.org/W4220915524, https://openalex.org/W4401647044, https://openalex.org/W3141298192, https://openalex.org/W4405200077, https://openalex.org/W4400922314, https://openalex.org/W2999615587, https://openalex.org/W4389109894, https://openalex.org/W2922363517, https://openalex.org/W2320362137, https://openalex.org/W4220776017, https://openalex.org/W2060442024, https://openalex.org/W2404606726, https://openalex.org/W2143333002, https://openalex.org/W2081387681, https://openalex.org/W1987240985, https://openalex.org/W3209577127, https://openalex.org/W2019478246, https://openalex.org/W4283808225, https://openalex.org/W2149134901, https://openalex.org/W2121891611, https://openalex.org/W2909204941 |
| referenced_works_count | 26 |
| abstract_inverted_index.1 | 132, 136, 207 |
| abstract_inverted_index.2 | 134, 200, 270 |
| abstract_inverted_index.3 | 139, 214, 256 |
| abstract_inverted_index.9 | 27, 63 |
| abstract_inverted_index.A | 358 |
| abstract_inverted_index.a | 34, 45, 70, 447 |
| abstract_inverted_index.(1 | 254, 268 |
| abstract_inverted_index./L | 64 |
| abstract_inverted_index.At | 422 |
| abstract_inverted_index.In | 395 |
| abstract_inverted_index.ML | 71, 273, 297 |
| abstract_inverted_index.To | 2 |
| abstract_inverted_index.UK | 83 |
| abstract_inverted_index.We | 160 |
| abstract_inverted_index.at | 99, 236 |
| abstract_inverted_index.be | 486 |
| abstract_inverted_index.if | 18 |
| abstract_inverted_index.in | 142, 324, 403, 458 |
| abstract_inverted_index.is | 334, 339, 363, 425, 440, 506 |
| abstract_inverted_index.it | 353, 456, 490 |
| abstract_inverted_index.no | 91, 426 |
| abstract_inverted_index.of | 37, 93, 127, 168, 288, 296, 388, 397, 412, 429, 436, 468, 474, 480, 499 |
| abstract_inverted_index.or | 351 |
| abstract_inverted_index.so | 482 |
| abstract_inverted_index.to | 43, 51, 164, 312, 369, 383, 444, 508 |
| abstract_inverted_index.we | 77 |
| abstract_inverted_index./L. | 28 |
| abstract_inverted_index.358 | 105 |
| abstract_inverted_index.CI: | 205, 212, 219 |
| abstract_inverted_index.CIA | 54, 128, 169, 243, 277, 454 |
| abstract_inverted_index.Key | 239 |
| abstract_inverted_index.The | 221, 316, 330, 492 |
| abstract_inverted_index.age | 245 |
| abstract_inverted_index.all | 469 |
| abstract_inverted_index.and | 95, 111, 117, 138, 158, 170, 234, 246, 255, 258, 262, 269, 281, 304, 406, 463, 501 |
| abstract_inverted_index.are | 12, 367, 414 |
| abstract_inverted_index.can | 299, 451, 485, 494 |
| abstract_inverted_index.did | 318 |
| abstract_inverted_index.due | 311 |
| abstract_inverted_index.for | 242, 250, 265, 307, 336, 361, 393 |
| abstract_inverted_index.had | 382 |
| abstract_inverted_index.has | 33, 401 |
| abstract_inverted_index.key | 179 |
| abstract_inverted_index.not | 319 |
| abstract_inverted_index.one | 101 |
| abstract_inverted_index.the | 19, 115, 125, 151, 286, 292, 305, 389, 418, 441, 460, 470 |
| abstract_inverted_index.was | 146 |
| abstract_inverted_index.way | 428 |
| abstract_inverted_index.(ML) | 48 |
| abstract_inverted_index.(two | 59 |
| abstract_inverted_index.0.1. | 466 |
| abstract_inverted_index.0.90 | 217 |
| abstract_inverted_index.0.91 | 210 |
| abstract_inverted_index.0.97 | 203 |
| abstract_inverted_index.0.99 | 194 |
| abstract_inverted_index.ANCs | 61 |
| abstract_inverted_index.CIA. | 108 |
| abstract_inverted_index.GDBT | 184 |
| abstract_inverted_index.This | 40, 439 |
| abstract_inverted_index.[95% | 195, 204, 211, 218 |
| abstract_inverted_index.also | 495 |
| abstract_inverted_index.area | 149 |
| abstract_inverted_index.both | 459 |
| abstract_inverted_index.cell | 10 |
| abstract_inverted_index.data | 80, 113 |
| abstract_inverted_index.four | 130 |
| abstract_inverted_index.from | 81, 114 |
| abstract_inverted_index.have | 381 |
| abstract_inverted_index.high | 35, 232 |
| abstract_inverted_index.late | 416 |
| abstract_inverted_index.long | 464 |
| abstract_inverted_index.many | 342, 354, 396, 410 |
| abstract_inverted_index.need | 306 |
| abstract_inverted_index.only | 331 |
| abstract_inverted_index.over | 65 |
| abstract_inverted_index.poor | 404 |
| abstract_inverted_index.rate | 36 |
| abstract_inverted_index.risk | 55, 167 |
| abstract_inverted_index.stop | 384 |
| abstract_inverted_index.term | 462 |
| abstract_inverted_index.than | 227 |
| abstract_inverted_index.that | 333, 366, 446, 483, 505 |
| abstract_inverted_index.this | 31, 328, 362, 400, 437 |
| abstract_inverted_index.time | 120 |
| abstract_inverted_index.tool | 50, 450 |
| abstract_inverted_index.with | 15, 86, 90, 98, 106, 173, 231, 291, 344 |
| abstract_inverted_index.≥2 | 66 |
| abstract_inverted_index.(ANC) | 23 |
| abstract_inverted_index.(CI): | 198 |
| abstract_inverted_index.2,190 | 88 |
| abstract_inverted_index.3,360 | 96 |
| abstract_inverted_index.5,550 | 82 |
| abstract_inverted_index.AUROC | 193, 202, 209, 216 |
| abstract_inverted_index.Added | 434 |
| abstract_inverted_index.Model | 144 |
| abstract_inverted_index.Using | 69, 109 |
| abstract_inverted_index.While | 29 |
| abstract_inverted_index.after | 356 |
| abstract_inverted_index.aimed | 42 |
| abstract_inverted_index.allow | 478 |
| abstract_inverted_index.being | 377 |
| abstract_inverted_index.below | 25 |
| abstract_inverted_index.blood | 9, 309, 364, 503, 510 |
| abstract_inverted_index.cases | 97, 411 |
| abstract_inverted_index.count | 22 |
| abstract_inverted_index.curve | 155 |
| abstract_inverted_index.drops | 24 |
| abstract_inverted_index.false | 38, 289 |
| abstract_inverted_index.first | 442 |
| abstract_inverted_index.least | 100 |
| abstract_inverted_index.model | 163, 223 |
| abstract_inverted_index.never | 347 |
| abstract_inverted_index.prior | 119 |
| abstract_inverted_index.short | 461 |
| abstract_inverted_index.study | 41, 317, 329, 438, 443 |
| abstract_inverted_index.term. | 465 |
| abstract_inverted_index.tests | 310, 365 |
| abstract_inverted_index.there | 424 |
| abstract_inverted_index.these | 398 |
| abstract_inverted_index.three | 118 |
| abstract_inverted_index.trees | 75 |
| abstract_inverted_index.under | 150, 417 |
| abstract_inverted_index.using | 56, 148 |
| abstract_inverted_index.value | 435 |
| abstract_inverted_index.week, | 133 |
| abstract_inverted_index.white | 8 |
| abstract_inverted_index.years | 355 |
| abstract_inverted_index.(CIA), | 6 |
| abstract_inverted_index.(CIA). | 374, 433 |
| abstract_inverted_index.1-week | 190 |
| abstract_inverted_index.across | 129, 279 |
| abstract_inverted_index.before | 327, 455, 489 |
| abstract_inverted_index.better | 52, 225 |
| abstract_inverted_index.counts | 11 |
| abstract_inverted_index.days). | 67 |
| abstract_inverted_index.detect | 370 |
| abstract_inverted_index.direct | 321 |
| abstract_inverted_index.event, | 103 |
| abstract_inverted_index.longer | 251 |
| abstract_inverted_index.models | 123, 185, 274, 298 |
| abstract_inverted_index.month, | 137 |
| abstract_inverted_index.month: | 208 |
| abstract_inverted_index.months | 140 |
| abstract_inverted_index.number | 287 |
| abstract_inverted_index.occurs | 457 |
| abstract_inverted_index.reason | 360 |
| abstract_inverted_index.reduce | 300 |
| abstract_inverted_index.short- | 280 |
| abstract_inverted_index.social | 407 |
| abstract_inverted_index.strong | 187 |
| abstract_inverted_index.tests, | 230 |
| abstract_inverted_index.tests. | 175 |
| abstract_inverted_index.values | 249, 261 |
| abstract_inverted_index.weeks, | 135 |
| abstract_inverted_index.weeks: | 201 |
| abstract_inverted_index.(GDBT)] | 76 |
| abstract_inverted_index.1.5×10 | 26 |
| abstract_inverted_index.Despite | 375 |
| abstract_inverted_index.Funding | 315 |
| abstract_inverted_index.Methods | 68 |
| abstract_inverted_index.another | 162 |
| abstract_inverted_index.because | 387 |
| abstract_inverted_index.closely | 13 |
| abstract_inverted_index.context | 325 |
| abstract_inverted_index.current | 116, 228, 259, 293, 390 |
| abstract_inverted_index.develop | 44 |
| abstract_inverted_index.genetic | 174, 229 |
| abstract_inverted_index.history | 92 |
| abstract_inverted_index.machine | 46, 475 |
| abstract_inverted_index.months) | 257 |
| abstract_inverted_index.months: | 215 |
| abstract_inverted_index.occurs. | 491 |
| abstract_inverted_index.predict | 53, 165, 276, 453 |
| abstract_inverted_index.prevent | 3, 496 |
| abstract_inverted_index.propose | 445 |
| abstract_inverted_index.receive | 320, 348, 352 |
| abstract_inverted_index.related | 507 |
| abstract_inverted_index.several | 379 |
| abstract_inverted_index.shorter | 266 |
| abstract_inverted_index.stopped | 17, 488 |
| abstract_inverted_index.system. | 294 |
| abstract_inverted_index.testing | 504 |
| abstract_inverted_index.treated | 85 |
| abstract_inverted_index.varying | 237 |
| abstract_inverted_index.weeks). | 271 |
| abstract_inverted_index.(AUROC), | 156 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Evidence | 326 |
| abstract_inverted_index.Outcomes | 183 |
| abstract_inverted_index.Research | 323 |
| abstract_inverted_index.absolute | 20 |
| abstract_inverted_index.achieved | 224 |
| abstract_inverted_index.advance. | 143 |
| abstract_inverted_index.analysed | 78 |
| abstract_inverted_index.analyses | 177 |
| abstract_inverted_index.approach | 32 |
| abstract_inverted_index.baseline | 166, 222, 247 |
| abstract_inverted_index.clinical | 79, 405 |
| abstract_inverted_index.compared | 171 |
| abstract_inverted_index.controls | 89 |
| abstract_inverted_index.criteria | 58, 392 |
| abstract_inverted_index.decision | 74, 449 |
| abstract_inverted_index.duration | 264 |
| abstract_inverted_index.evidence | 472 |
| abstract_inverted_index.existing | 419 |
| abstract_inverted_index.features | 180, 241 |
| abstract_inverted_index.funding. | 322 |
| abstract_inverted_index.horizon: | 192 |
| abstract_inverted_index.horizons | 253, 267 |
| abstract_inverted_index.included | 244 |
| abstract_inverted_index.interval | 197 |
| abstract_inverted_index.learning | 47, 476 |
| abstract_inverted_index.operator | 153 |
| abstract_inverted_index.patients | 84, 343, 380 |
| abstract_inverted_index.present, | 423 |
| abstract_inverted_index.receiver | 152 |
| abstract_inverted_index.reducing | 285 |
| abstract_inverted_index.reliable | 427 |
| abstract_inverted_index.reliably | 275, 452 |
| abstract_inverted_index.required | 368 |
| abstract_inverted_index.resulted | 402 |
| abstract_inverted_index.results. | 511 |
| abstract_inverted_index.spurious | 509 |
| abstract_inverted_index.stopping | 498 |
| abstract_inverted_index.windows, | 121 |
| abstract_inverted_index.algorithm | 493 |
| abstract_inverted_index.available | 471 |
| abstract_inverted_index.clozapine | 349, 385, 484, 500 |
| abstract_inverted_index.developed | 161 |
| abstract_inverted_index.effective | 335 |
| abstract_inverted_index.estimated | 124 |
| abstract_inverted_index.evaluated | 147 |
| abstract_inverted_index.horizons, | 283 |
| abstract_inverted_index.including | 104 |
| abstract_inverted_index.long-term | 282 |
| abstract_inverted_index.outcomes. | 408 |
| abstract_inverted_index.patients, | 399 |
| abstract_inverted_index.positives | 290 |
| abstract_inverted_index.potential | 371 |
| abstract_inverted_index.prominent | 359 |
| abstract_inverted_index.psychosis | 338, 346 |
| abstract_inverted_index.suspected | 313 |
| abstract_inverted_index.technique | 72 |
| abstract_inverted_index.treatment | 16, 263, 302, 350 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.additional | 308, 502 |
| abstract_inverted_index.algorithms | 477 |
| abstract_inverted_index.clozapine. | 340 |
| abstract_inverted_index.clozapine: | 87 |
| abstract_inverted_index.confidence | 196 |
| abstract_inverted_index.effective, | 30, 378 |
| abstract_inverted_index.identified | 178, 415 |
| abstract_inverted_index.likelihood | 126 |
| abstract_inverted_index.monitored, | 14 |
| abstract_inverted_index.monitoring | 376, 420 |
| abstract_inverted_index.neutrophil | 21 |
| abstract_inverted_index.occurrence | 278 |
| abstract_inverted_index.positives. | 39 |
| abstract_inverted_index.predicting | 430 |
| abstract_inverted_index.prediction | 479 |
| abstract_inverted_index.predictive | 122, 188 |
| abstract_inverted_index.protocols. | 421 |
| abstract_inverted_index.<0.5×10 | 62 |
| abstract_inverted_index.Tragically, | 341 |
| abstract_inverted_index.appropriate | 487 |
| abstract_inverted_index.consecutive | 60 |
| abstract_inverted_index.demographic | 112 |
| abstract_inverted_index.forecasting | 191, 252 |
| abstract_inverted_index.influencing | 181 |
| abstract_inverted_index.neutropenia | 94 |
| abstract_inverted_index.neutropenic | 102 |
| abstract_inverted_index.patients’ | 7 |
| abstract_inverted_index.performance | 145, 172, 226 |
| abstract_inverted_index.potentially | 284 |
| abstract_inverted_index.sensitivity | 235 |
| abstract_inverted_index.specificity | 233 |
| abstract_inverted_index.thresholds. | 238 |
| abstract_inverted_index.unnecessary | 301, 497 |
| abstract_inverted_index.Implications | 467 |
| abstract_inverted_index.demonstrated | 186 |
| abstract_inverted_index.performance: | 189 |
| abstract_inverted_index.predictions. | 182 |
| abstract_inverted_index.respectively | 141 |
| abstract_inverted_index.sensitivity, | 157 |
| abstract_inverted_index.specificity. | 159 |
| abstract_inverted_index.0.86–0.94]; | 213 |
| abstract_inverted_index.0.88–0.92]. | 220 |
| abstract_inverted_index.0.95–0.99]; | 206 |
| abstract_inverted_index.0.99–0.99]; | 199 |
| abstract_inverted_index.Additionally, | 409 |
| abstract_inverted_index.antipsychotic | 332 |
| abstract_inverted_index.interruptions | 303 |
| abstract_inverted_index.pattern-based | 57, 107 |
| abstract_inverted_index.time-windows: | 131 |
| abstract_inverted_index.unnecessarily | 386 |
| abstract_inverted_index.Explainability | 176 |
| abstract_inverted_index.Implementation | 295, 473 |
| abstract_inverted_index.Interpretation | 272 |
| abstract_inverted_index.characteristic | 154 |
| abstract_inverted_index.discriminative | 240 |
| abstract_inverted_index.haematological | 110, 248, 260, 391 |
| abstract_inverted_index.agranulocytosis | 5, 373, 413, 432, 481 |
| abstract_inverted_index.decision-making | 49 |
| abstract_inverted_index.agranulocytosis. | 314 |
| abstract_inverted_index.discontinuation. | 394 |
| abstract_inverted_index.machine-learning | 448 |
| abstract_inverted_index.[gradient-boosted | 73 |
| abstract_inverted_index.clozapine-induced | 4, 372, 431 |
| abstract_inverted_index.treatmentresistant | 337 |
| abstract_inverted_index.treatment-resistant | 345 |
| abstract_inverted_index.“treatmentresistance”. | 357 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.8241739 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |