Predicting and Relation between Bio-psychosocial Factors and Type of Childbirth using Decision Tree Method Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-34770/v1
Background Growing the worldwide and Iranian cesarean section rate and rising morbidity and mortality thereafter for the mother and infant has been an important health issue. Predictive models can identify individuals with a higher probability of cesarean section and make better decisions. In this study, we investigated the bio-psychosocial factors associated with type of delivery. We designed a predictive model using the decision tree C4.5 algorithm. Methods In this longitudinal study 170 pregnant women were sampled in the third trimester of pregnancy. At the baseline phase blood samples were taken from mothers to measure estrogen hormone. Birth information was recorded at the follow-up time at 30–42 days postpartum. Modeling was performed using MATLAB software and C4.5 decision tree algorithm using input variables and the target variable. Results Previous type of childbirth, maternal body mass index at childbirth, maternal age, and serum estrogen were the most significant factors in predicting the childbirth type, respectively and decision tree model with 89.6%accuracy in the training stage and 83.3% in the test stage predicted the result. Conclusion The decision tree model designed with high accuracy and sensitivity can predict the type of childbirth. By recognizing the contributing factors and model rules, health practitioners and policymakers can take preventive action.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-34770/v1
- https://www.researchsquare.com/article/rs-34770/v1.pdf?c=1631858542000
- OA Status
- green
- Cited By
- 1
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4212977181
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4212977181Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-34770/v1Digital Object Identifier
- Title
-
Predicting and Relation between Bio-psychosocial Factors and Type of Childbirth using Decision Tree MethodWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-25Full publication date if available
- Authors
-
Saiedeh Sadat Hajimirzaie, Najmeh Tehranian, Seyed Abbas Mousavi, Amin Golabpour, Mehdi Mirzaii, Afsaneh Keramat, Ahmad KhosraviList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-34770/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-34770/v1.pdf?c=1631858542000Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-34770/v1.pdf?c=1631858542000Direct OA link when available
- Concepts
-
Childbirth, Decision tree, Psychosocial, Decision tree model, Obstetrics, Decision model, Medicine, Pregnancy, Tree (set theory), Computer science, Machine learning, Mathematics, Biology, Psychiatry, Genetics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4212977181 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-34770/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-34770/v1 |
| ids.openalex | https://openalex.org/W4212977181 |
| fwci | |
| type | preprint |
| title | Predicting and Relation between Bio-psychosocial Factors and Type of Childbirth using Decision Tree Method |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12935 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.673799991607666 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Healthcare Systems and Public Health |
| topics[1].id | https://openalex.org/T10209 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.6237000226974487 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2735 |
| topics[1].subfield.display_name | Pediatrics, Perinatology and Child Health |
| topics[1].display_name | Global Maternal and Child Health |
| topics[2].id | https://openalex.org/T11930 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.5759999752044678 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | Cardiac, Anesthesia and Surgical Outcomes |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779703513 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8183920383453369 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q34581 |
| concepts[0].display_name | Childbirth |
| concepts[1].id | https://openalex.org/C84525736 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6965948343276978 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[1].display_name | Decision tree |
| concepts[2].id | https://openalex.org/C150966472 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6724753975868225 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3410145 |
| concepts[2].display_name | Psychosocial |
| concepts[3].id | https://openalex.org/C56289965 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5941482186317444 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5249246 |
| concepts[3].display_name | Decision tree model |
| concepts[4].id | https://openalex.org/C131872663 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5115876793861389 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5284418 |
| concepts[4].display_name | Obstetrics |
| concepts[5].id | https://openalex.org/C59594135 |
| concepts[5].level | 2 |
| concepts[5].score | 0.50166916847229 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5249242 |
| concepts[5].display_name | Decision model |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.47775593400001526 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C2779234561 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45210713148117065 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11995 |
| concepts[7].display_name | Pregnancy |
| concepts[8].id | https://openalex.org/C113174947 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4185059070587158 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[8].display_name | Tree (set theory) |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3569740653038025 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.23374086618423462 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2234993278980255 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.10728266835212708 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C118552586 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[13].display_name | Psychiatry |
| concepts[14].id | https://openalex.org/C54355233 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[14].display_name | Genetics |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/childbirth |
| keywords[0].score | 0.8183920383453369 |
| keywords[0].display_name | Childbirth |
| keywords[1].id | https://openalex.org/keywords/decision-tree |
| keywords[1].score | 0.6965948343276978 |
| keywords[1].display_name | Decision tree |
| keywords[2].id | https://openalex.org/keywords/psychosocial |
| keywords[2].score | 0.6724753975868225 |
| keywords[2].display_name | Psychosocial |
| keywords[3].id | https://openalex.org/keywords/decision-tree-model |
| keywords[3].score | 0.5941482186317444 |
| keywords[3].display_name | Decision tree model |
| keywords[4].id | https://openalex.org/keywords/obstetrics |
| keywords[4].score | 0.5115876793861389 |
| keywords[4].display_name | Obstetrics |
| keywords[5].id | https://openalex.org/keywords/decision-model |
| keywords[5].score | 0.50166916847229 |
| keywords[5].display_name | Decision model |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.47775593400001526 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/pregnancy |
| keywords[7].score | 0.45210713148117065 |
| keywords[7].display_name | Pregnancy |
| keywords[8].id | https://openalex.org/keywords/tree |
| keywords[8].score | 0.4185059070587158 |
| keywords[8].display_name | Tree (set theory) |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.3569740653038025 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.23374086618423462 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.2234993278980255 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.10728266835212708 |
| keywords[12].display_name | Biology |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-34770/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-34770/v1.pdf?c=1631858542000 |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-34770/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5044693921 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1763-0351 |
| authorships[0].author.display_name | Saiedeh Sadat Hajimirzaie |
| authorships[0].countries | IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I176861719 |
| authorships[0].affiliations[0].raw_affiliation_string | Shahrood University of Medical Sciences |
| authorships[0].institutions[0].id | https://openalex.org/I176861719 |
| authorships[0].institutions[0].ror | https://ror.org/00yqvtm78 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I176861719 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | University of Shahrood |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Saiedeh sadat Hajimirzaie |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Shahrood University of Medical Sciences |
| authorships[1].author.id | https://openalex.org/A5087590153 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2137-5333 |
| authorships[1].author.display_name | Najmeh Tehranian |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1516879 |
| authorships[1].affiliations[0].raw_affiliation_string | Tarbiat Modares University Faculty of Medical Sciences |
| authorships[1].institutions[0].id | https://openalex.org/I1516879 |
| authorships[1].institutions[0].ror | https://ror.org/03mwgfy56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1516879 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | Tarbiat Modares University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Najmeh Tehranian |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Tarbiat Modares University Faculty of Medical Sciences |
| authorships[2].author.id | https://openalex.org/A5034969085 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0953-0705 |
| authorships[2].author.display_name | Seyed Abbas Mousavi |
| authorships[2].countries | IR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I88085062 |
| authorships[2].affiliations[0].raw_affiliation_string | Mazandaran University of Medical Sciences |
| authorships[2].institutions[0].id | https://openalex.org/I88085062 |
| authorships[2].institutions[0].ror | https://ror.org/02wkcrp04 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I88085062 |
| authorships[2].institutions[0].country_code | IR |
| authorships[2].institutions[0].display_name | Mazandaran University of Medical Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Seyed Abbas Mousavi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Mazandaran University of Medical Sciences |
| authorships[3].author.id | https://openalex.org/A5051506988 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7649-4033 |
| authorships[3].author.display_name | Amin Golabpour |
| authorships[3].countries | IR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I176861719 |
| authorships[3].affiliations[0].raw_affiliation_string | Shahrood University of Medical Sciences |
| authorships[3].institutions[0].id | https://openalex.org/I176861719 |
| authorships[3].institutions[0].ror | https://ror.org/00yqvtm78 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I176861719 |
| authorships[3].institutions[0].country_code | IR |
| authorships[3].institutions[0].display_name | University of Shahrood |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Amin Golabpour |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Shahrood University of Medical Sciences |
| authorships[4].author.id | https://openalex.org/A5078983560 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Mehdi Mirzaii |
| authorships[4].countries | IR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I176861719 |
| authorships[4].affiliations[0].raw_affiliation_string | Shahrood University of Medical Sciences |
| authorships[4].institutions[0].id | https://openalex.org/I176861719 |
| authorships[4].institutions[0].ror | https://ror.org/00yqvtm78 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I176861719 |
| authorships[4].institutions[0].country_code | IR |
| authorships[4].institutions[0].display_name | University of Shahrood |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mehdi Mirzaii |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Shahrood University of Medical Sciences |
| authorships[5].author.id | https://openalex.org/A5073441767 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Afsaneh Keramat |
| authorships[5].countries | IR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I176861719 |
| authorships[5].affiliations[0].raw_affiliation_string | Shahrood University of Medical Sciences |
| authorships[5].institutions[0].id | https://openalex.org/I176861719 |
| authorships[5].institutions[0].ror | https://ror.org/00yqvtm78 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I176861719 |
| authorships[5].institutions[0].country_code | IR |
| authorships[5].institutions[0].display_name | University of Shahrood |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Afsaneh Keramat |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Shahrood University of Medical Sciences |
| authorships[6].author.id | https://openalex.org/A5103362825 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Ahmad Khosravi |
| authorships[6].countries | IR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I176861719 |
| authorships[6].affiliations[0].raw_affiliation_string | Shahrood University of Medical Sciences |
| authorships[6].institutions[0].id | https://openalex.org/I176861719 |
| authorships[6].institutions[0].ror | https://ror.org/00yqvtm78 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I176861719 |
| authorships[6].institutions[0].country_code | IR |
| authorships[6].institutions[0].display_name | University of Shahrood |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Ahmad Khosravi |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Shahrood University of Medical Sciences |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-34770/v1.pdf?c=1631858542000 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting and Relation between Bio-psychosocial Factors and Type of Childbirth using Decision Tree Method |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12935 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.673799991607666 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Healthcare Systems and Public Health |
| related_works | https://openalex.org/W4313906440, https://openalex.org/W2389814391, https://openalex.org/W3004292714, https://openalex.org/W2087668131, https://openalex.org/W4380629648, https://openalex.org/W3214885503, https://openalex.org/W4385640509, https://openalex.org/W2964523615, https://openalex.org/W2982850857, https://openalex.org/W4366537677 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-34770/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-34770/v1.pdf?c=1631858542000 |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-34770/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-34770/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-34770/v1.pdf?c=1631858542000 |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-34770/v1 |
| publication_date | 2020-06-25 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2282321926, https://openalex.org/W1998366967, https://openalex.org/W2058279486, https://openalex.org/W6646459132, https://openalex.org/W2284500377, https://openalex.org/W2333395355, https://openalex.org/W4293003987, https://openalex.org/W2176354189, https://openalex.org/W2586185009, https://openalex.org/W2184097807, https://openalex.org/W1984236331, https://openalex.org/W2523424780 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 33, 58 |
| abstract_inverted_index.At | 83 |
| abstract_inverted_index.By | 190 |
| abstract_inverted_index.In | 43, 68 |
| abstract_inverted_index.We | 56 |
| abstract_inverted_index.an | 23 |
| abstract_inverted_index.at | 101, 105, 136 |
| abstract_inverted_index.in | 77, 148, 160, 166 |
| abstract_inverted_index.of | 36, 54, 81, 130, 188 |
| abstract_inverted_index.to | 93 |
| abstract_inverted_index.we | 46 |
| abstract_inverted_index.170 | 72 |
| abstract_inverted_index.The | 174 |
| abstract_inverted_index.and | 5, 10, 13, 19, 39, 115, 123, 140, 154, 164, 182, 195, 200 |
| abstract_inverted_index.can | 29, 184, 202 |
| abstract_inverted_index.for | 16 |
| abstract_inverted_index.has | 21 |
| abstract_inverted_index.the | 3, 17, 48, 62, 78, 84, 102, 124, 144, 150, 161, 167, 171, 186, 192 |
| abstract_inverted_index.was | 99, 110 |
| abstract_inverted_index.C4.5 | 65, 116 |
| abstract_inverted_index.age, | 139 |
| abstract_inverted_index.been | 22 |
| abstract_inverted_index.body | 133 |
| abstract_inverted_index.days | 107 |
| abstract_inverted_index.from | 91 |
| abstract_inverted_index.high | 180 |
| abstract_inverted_index.make | 40 |
| abstract_inverted_index.mass | 134 |
| abstract_inverted_index.most | 145 |
| abstract_inverted_index.rate | 9 |
| abstract_inverted_index.take | 203 |
| abstract_inverted_index.test | 168 |
| abstract_inverted_index.this | 44, 69 |
| abstract_inverted_index.time | 104 |
| abstract_inverted_index.tree | 64, 118, 156, 176 |
| abstract_inverted_index.type | 53, 129, 187 |
| abstract_inverted_index.were | 75, 89, 143 |
| abstract_inverted_index.with | 32, 52, 158, 179 |
| abstract_inverted_index.83.3% | 165 |
| abstract_inverted_index.Birth | 97 |
| abstract_inverted_index.blood | 87 |
| abstract_inverted_index.index | 135 |
| abstract_inverted_index.input | 121 |
| abstract_inverted_index.model | 60, 157, 177, 196 |
| abstract_inverted_index.phase | 86 |
| abstract_inverted_index.serum | 141 |
| abstract_inverted_index.stage | 163, 169 |
| abstract_inverted_index.study | 71 |
| abstract_inverted_index.taken | 90 |
| abstract_inverted_index.third | 79 |
| abstract_inverted_index.type, | 152 |
| abstract_inverted_index.using | 61, 112, 120 |
| abstract_inverted_index.women | 74 |
| abstract_inverted_index.MATLAB | 113 |
| abstract_inverted_index.better | 41 |
| abstract_inverted_index.health | 25, 198 |
| abstract_inverted_index.higher | 34 |
| abstract_inverted_index.infant | 20 |
| abstract_inverted_index.issue. | 26 |
| abstract_inverted_index.models | 28 |
| abstract_inverted_index.mother | 18 |
| abstract_inverted_index.rising | 11 |
| abstract_inverted_index.rules, | 197 |
| abstract_inverted_index.study, | 45 |
| abstract_inverted_index.target | 125 |
| abstract_inverted_index.30–42 | 106 |
| abstract_inverted_index.Growing | 2 |
| abstract_inverted_index.Iranian | 6 |
| abstract_inverted_index.Methods | 67 |
| abstract_inverted_index.Results | 127 |
| abstract_inverted_index.action. | 205 |
| abstract_inverted_index.factors | 50, 147, 194 |
| abstract_inverted_index.measure | 94 |
| abstract_inverted_index.mothers | 92 |
| abstract_inverted_index.predict | 185 |
| abstract_inverted_index.result. | 172 |
| abstract_inverted_index.sampled | 76 |
| abstract_inverted_index.samples | 88 |
| abstract_inverted_index.section | 8, 38 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Modeling | 109 |
| abstract_inverted_index.Previous | 128 |
| abstract_inverted_index.accuracy | 181 |
| abstract_inverted_index.baseline | 85 |
| abstract_inverted_index.cesarean | 7, 37 |
| abstract_inverted_index.decision | 63, 117, 155, 175 |
| abstract_inverted_index.designed | 57, 178 |
| abstract_inverted_index.estrogen | 95, 142 |
| abstract_inverted_index.hormone. | 96 |
| abstract_inverted_index.identify | 30 |
| abstract_inverted_index.maternal | 132, 138 |
| abstract_inverted_index.pregnant | 73 |
| abstract_inverted_index.recorded | 100 |
| abstract_inverted_index.software | 114 |
| abstract_inverted_index.training | 162 |
| abstract_inverted_index.algorithm | 119 |
| abstract_inverted_index.delivery. | 55 |
| abstract_inverted_index.follow-up | 103 |
| abstract_inverted_index.important | 24 |
| abstract_inverted_index.morbidity | 12 |
| abstract_inverted_index.mortality | 14 |
| abstract_inverted_index.performed | 111 |
| abstract_inverted_index.predicted | 170 |
| abstract_inverted_index.trimester | 80 |
| abstract_inverted_index.variable. | 126 |
| abstract_inverted_index.variables | 122 |
| abstract_inverted_index.worldwide | 4 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Conclusion | 173 |
| abstract_inverted_index.Predictive | 27 |
| abstract_inverted_index.algorithm. | 66 |
| abstract_inverted_index.associated | 51 |
| abstract_inverted_index.childbirth | 151 |
| abstract_inverted_index.decisions. | 42 |
| abstract_inverted_index.predicting | 149 |
| abstract_inverted_index.predictive | 59 |
| abstract_inverted_index.pregnancy. | 82 |
| abstract_inverted_index.preventive | 204 |
| abstract_inverted_index.thereafter | 15 |
| abstract_inverted_index.childbirth, | 131, 137 |
| abstract_inverted_index.childbirth. | 189 |
| abstract_inverted_index.individuals | 31 |
| abstract_inverted_index.information | 98 |
| abstract_inverted_index.postpartum. | 108 |
| abstract_inverted_index.probability | 35 |
| abstract_inverted_index.recognizing | 191 |
| abstract_inverted_index.sensitivity | 183 |
| abstract_inverted_index.significant | 146 |
| abstract_inverted_index.contributing | 193 |
| abstract_inverted_index.investigated | 47 |
| abstract_inverted_index.longitudinal | 70 |
| abstract_inverted_index.policymakers | 201 |
| abstract_inverted_index.respectively | 153 |
| abstract_inverted_index.89.6%accuracy | 159 |
| abstract_inverted_index.practitioners | 199 |
| abstract_inverted_index.bio-psychosocial | 49 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5103362825 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I176861719 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8199999928474426 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.29702009 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |