Predicting Crack Nucleation and Propagation in Brittle Materials Using Deep Operator Networks with Diverse Trunk Architectures Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.00016
Phase-field modeling reformulates fracture problems as energy minimization problems and enables a comprehensive characterization of the fracture process, including crack nucleation, propagation, merging, and branching, without relying on ad-hoc assumptions. However, the numerical solution of phase-field fracture problems is characterized by a high computational cost. To address this challenge, in this paper, we employ a deep neural operator (DeepONet) consisting of a branch network and a trunk network to solve brittle fracture problems. We explore three distinct approaches that vary in their trunk network configurations. In the first approach, we demonstrate the effectiveness of a two-step DeepONet, which results in a simplification of the learning task. In the second approach, we employ a physics-informed DeepONet, whereby the mathematical expression of the energy is integrated into the trunk network's loss to enforce physical consistency. The integration of physics also results in a substantially smaller data size needed for training. In the third approach, we replace the neural network in the trunk with a Kolmogorov-Arnold Network and train it without the physics loss. Using these methods, we model crack nucleation in a one-dimensional homogeneous bar under prescribed end displacements, as well as crack propagation and branching in single edge-notched specimens with varying notch lengths subjected to tensile and shear loading. We show that the networks predict the solution fields accurately, and the error in the predicted fields is localized near the crack.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.00016
- https://arxiv.org/pdf/2501.00016
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406051733
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406051733Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.00016Digital Object Identifier
- Title
-
Predicting Crack Nucleation and Propagation in Brittle Materials Using Deep Operator Networks with Diverse Trunk ArchitecturesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-15Full publication date if available
- Authors
-
Elham Kiyani, M. Manav, Nikhil Kadivar, Laura De Lorenzis, George Em KarniadakisList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.00016Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.00016Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.00016Direct OA link when available
- Concepts
-
Nucleation, Brittleness, Operator (biology), Trunk, Computer science, Materials science, Geology, Composite material, Physics, Chemistry, Biology, Thermodynamics, Ecology, Biochemistry, Repressor, Transcription factor, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406051733 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.00016 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.00016 |
| ids.openalex | https://openalex.org/W4406051733 |
| fwci | |
| type | preprint |
| title | Predicting Crack Nucleation and Propagation in Brittle Materials Using Deep Operator Networks with Diverse Trunk Architectures |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12169 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9674000144004822 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Non-Destructive Testing Techniques |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9656999707221985 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C61048295 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7581932544708252 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q909022 |
| concepts[0].display_name | Nucleation |
| concepts[1].id | https://openalex.org/C136478896 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6331794857978821 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q898288 |
| concepts[1].display_name | Brittleness |
| concepts[2].id | https://openalex.org/C17020691 |
| concepts[2].level | 5 |
| concepts[2].score | 0.5037640929222107 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[2].display_name | Operator (biology) |
| concepts[3].id | https://openalex.org/C2781197403 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4924679696559906 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q193472 |
| concepts[3].display_name | Trunk |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4331769645214081 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C192562407 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3975297212600708 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[5].display_name | Materials science |
| concepts[6].id | https://openalex.org/C127313418 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3258470892906189 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[6].display_name | Geology |
| concepts[7].id | https://openalex.org/C159985019 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2729874849319458 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[7].display_name | Composite material |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.17982697486877441 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C185592680 |
| concepts[9].level | 0 |
| concepts[9].score | 0.10520774126052856 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[9].display_name | Chemistry |
| concepts[10].id | https://openalex.org/C86803240 |
| concepts[10].level | 0 |
| concepts[10].score | 0.08126527070999146 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[10].display_name | Biology |
| concepts[11].id | https://openalex.org/C97355855 |
| concepts[11].level | 1 |
| concepts[11].score | 0.06748020648956299 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[11].display_name | Thermodynamics |
| concepts[12].id | https://openalex.org/C18903297 |
| concepts[12].level | 1 |
| concepts[12].score | 0.058020830154418945 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[12].display_name | Ecology |
| concepts[13].id | https://openalex.org/C55493867 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[13].display_name | Biochemistry |
| concepts[14].id | https://openalex.org/C158448853 |
| concepts[14].level | 4 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[14].display_name | Repressor |
| concepts[15].id | https://openalex.org/C86339819 |
| concepts[15].level | 3 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[15].display_name | Transcription factor |
| concepts[16].id | https://openalex.org/C104317684 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[16].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/nucleation |
| keywords[0].score | 0.7581932544708252 |
| keywords[0].display_name | Nucleation |
| keywords[1].id | https://openalex.org/keywords/brittleness |
| keywords[1].score | 0.6331794857978821 |
| keywords[1].display_name | Brittleness |
| keywords[2].id | https://openalex.org/keywords/operator |
| keywords[2].score | 0.5037640929222107 |
| keywords[2].display_name | Operator (biology) |
| keywords[3].id | https://openalex.org/keywords/trunk |
| keywords[3].score | 0.4924679696559906 |
| keywords[3].display_name | Trunk |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4331769645214081 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/materials-science |
| keywords[5].score | 0.3975297212600708 |
| keywords[5].display_name | Materials science |
| keywords[6].id | https://openalex.org/keywords/geology |
| keywords[6].score | 0.3258470892906189 |
| keywords[6].display_name | Geology |
| keywords[7].id | https://openalex.org/keywords/composite-material |
| keywords[7].score | 0.2729874849319458 |
| keywords[7].display_name | Composite material |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.17982697486877441 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/chemistry |
| keywords[9].score | 0.10520774126052856 |
| keywords[9].display_name | Chemistry |
| keywords[10].id | https://openalex.org/keywords/biology |
| keywords[10].score | 0.08126527070999146 |
| keywords[10].display_name | Biology |
| keywords[11].id | https://openalex.org/keywords/thermodynamics |
| keywords[11].score | 0.06748020648956299 |
| keywords[11].display_name | Thermodynamics |
| keywords[12].id | https://openalex.org/keywords/ecology |
| keywords[12].score | 0.058020830154418945 |
| keywords[12].display_name | Ecology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.00016 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.00016 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.00016 |
| locations[1].id | doi:10.48550/arxiv.2501.00016 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.00016 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5049992714 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Elham Kiyani |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kiyani, Elham |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5017124355 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | M. Manav |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Manav, Manav |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5099001496 |
| authorships[2].author.orcid | https://orcid.org/0009-0003-2904-8681 |
| authorships[2].author.display_name | Nikhil Kadivar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kadivar, Nikhil |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5086471469 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2748-3287 |
| authorships[3].author.display_name | Laura De Lorenzis |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | De Lorenzis, Laura |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5055763595 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | George Em Karniadakis |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Karniadakis, George Em |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.00016 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting Crack Nucleation and Propagation in Brittle Materials Using Deep Operator Networks with Diverse Trunk Architectures |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12169 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9674000144004822 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Non-Destructive Testing Techniques |
| related_works | https://openalex.org/W4313886759, https://openalex.org/W2014598323, https://openalex.org/W3196590631, https://openalex.org/W4289780727, https://openalex.org/W2189903790, https://openalex.org/W2334739780, https://openalex.org/W1987421019, https://openalex.org/W2363424936, https://openalex.org/W4388927674, https://openalex.org/W1495724091 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.00016 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.00016 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.00016 |
| primary_location.id | pmh:oai:arXiv.org:2501.00016 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.00016 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.00016 |
| publication_date | 2024-12-15 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 41, 54, 61, 65, 94, 100, 112, 140, 161, 179 |
| abstract_inverted_index.In | 85, 106, 148 |
| abstract_inverted_index.To | 45 |
| abstract_inverted_index.We | 73, 208 |
| abstract_inverted_index.as | 5, 187, 189 |
| abstract_inverted_index.by | 40 |
| abstract_inverted_index.in | 49, 80, 99, 139, 157, 178, 194, 221 |
| abstract_inverted_index.is | 38, 122, 225 |
| abstract_inverted_index.it | 166 |
| abstract_inverted_index.of | 14, 34, 60, 93, 102, 119, 135 |
| abstract_inverted_index.on | 27 |
| abstract_inverted_index.to | 68, 129, 203 |
| abstract_inverted_index.we | 52, 89, 110, 152, 174 |
| abstract_inverted_index.The | 133 |
| abstract_inverted_index.and | 9, 23, 64, 164, 192, 205, 218 |
| abstract_inverted_index.bar | 182 |
| abstract_inverted_index.end | 185 |
| abstract_inverted_index.for | 146 |
| abstract_inverted_index.the | 15, 31, 86, 91, 103, 107, 116, 120, 125, 149, 154, 158, 168, 211, 214, 219, 222, 228 |
| abstract_inverted_index.also | 137 |
| abstract_inverted_index.data | 143 |
| abstract_inverted_index.deep | 55 |
| abstract_inverted_index.high | 42 |
| abstract_inverted_index.into | 124 |
| abstract_inverted_index.loss | 128 |
| abstract_inverted_index.near | 227 |
| abstract_inverted_index.show | 209 |
| abstract_inverted_index.size | 144 |
| abstract_inverted_index.that | 78, 210 |
| abstract_inverted_index.this | 47, 50 |
| abstract_inverted_index.vary | 79 |
| abstract_inverted_index.well | 188 |
| abstract_inverted_index.with | 160, 198 |
| abstract_inverted_index.Using | 171 |
| abstract_inverted_index.cost. | 44 |
| abstract_inverted_index.crack | 19, 176, 190 |
| abstract_inverted_index.error | 220 |
| abstract_inverted_index.first | 87 |
| abstract_inverted_index.loss. | 170 |
| abstract_inverted_index.model | 175 |
| abstract_inverted_index.notch | 200 |
| abstract_inverted_index.shear | 206 |
| abstract_inverted_index.solve | 69 |
| abstract_inverted_index.task. | 105 |
| abstract_inverted_index.their | 81 |
| abstract_inverted_index.these | 172 |
| abstract_inverted_index.third | 150 |
| abstract_inverted_index.three | 75 |
| abstract_inverted_index.train | 165 |
| abstract_inverted_index.trunk | 66, 82, 126, 159 |
| abstract_inverted_index.under | 183 |
| abstract_inverted_index.which | 97 |
| abstract_inverted_index.ad-hoc | 28 |
| abstract_inverted_index.branch | 62 |
| abstract_inverted_index.crack. | 229 |
| abstract_inverted_index.employ | 53, 111 |
| abstract_inverted_index.energy | 6, 121 |
| abstract_inverted_index.fields | 216, 224 |
| abstract_inverted_index.needed | 145 |
| abstract_inverted_index.neural | 56, 155 |
| abstract_inverted_index.paper, | 51 |
| abstract_inverted_index.second | 108 |
| abstract_inverted_index.single | 195 |
| abstract_inverted_index.Network | 163 |
| abstract_inverted_index.address | 46 |
| abstract_inverted_index.brittle | 70 |
| abstract_inverted_index.enables | 10 |
| abstract_inverted_index.enforce | 130 |
| abstract_inverted_index.explore | 74 |
| abstract_inverted_index.lengths | 201 |
| abstract_inverted_index.network | 63, 67, 83, 156 |
| abstract_inverted_index.physics | 136, 169 |
| abstract_inverted_index.predict | 213 |
| abstract_inverted_index.relying | 26 |
| abstract_inverted_index.replace | 153 |
| abstract_inverted_index.results | 98, 138 |
| abstract_inverted_index.smaller | 142 |
| abstract_inverted_index.tensile | 204 |
| abstract_inverted_index.varying | 199 |
| abstract_inverted_index.whereby | 115 |
| abstract_inverted_index.without | 25, 167 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.distinct | 76 |
| abstract_inverted_index.fracture | 3, 16, 36, 71 |
| abstract_inverted_index.learning | 104 |
| abstract_inverted_index.loading. | 207 |
| abstract_inverted_index.merging, | 22 |
| abstract_inverted_index.methods, | 173 |
| abstract_inverted_index.modeling | 1 |
| abstract_inverted_index.networks | 212 |
| abstract_inverted_index.operator | 57 |
| abstract_inverted_index.physical | 131 |
| abstract_inverted_index.problems | 4, 8, 37 |
| abstract_inverted_index.process, | 17 |
| abstract_inverted_index.solution | 33, 215 |
| abstract_inverted_index.two-step | 95 |
| abstract_inverted_index.DeepONet, | 96, 114 |
| abstract_inverted_index.approach, | 88, 109, 151 |
| abstract_inverted_index.branching | 193 |
| abstract_inverted_index.including | 18 |
| abstract_inverted_index.localized | 226 |
| abstract_inverted_index.network's | 127 |
| abstract_inverted_index.numerical | 32 |
| abstract_inverted_index.predicted | 223 |
| abstract_inverted_index.problems. | 72 |
| abstract_inverted_index.specimens | 197 |
| abstract_inverted_index.subjected | 202 |
| abstract_inverted_index.training. | 147 |
| abstract_inverted_index.(DeepONet) | 58 |
| abstract_inverted_index.approaches | 77 |
| abstract_inverted_index.branching, | 24 |
| abstract_inverted_index.challenge, | 48 |
| abstract_inverted_index.consisting | 59 |
| abstract_inverted_index.expression | 118 |
| abstract_inverted_index.integrated | 123 |
| abstract_inverted_index.nucleation | 177 |
| abstract_inverted_index.prescribed | 184 |
| abstract_inverted_index.Phase-field | 0 |
| abstract_inverted_index.accurately, | 217 |
| abstract_inverted_index.demonstrate | 90 |
| abstract_inverted_index.homogeneous | 181 |
| abstract_inverted_index.integration | 134 |
| abstract_inverted_index.nucleation, | 20 |
| abstract_inverted_index.phase-field | 35 |
| abstract_inverted_index.propagation | 191 |
| abstract_inverted_index.assumptions. | 29 |
| abstract_inverted_index.consistency. | 132 |
| abstract_inverted_index.edge-notched | 196 |
| abstract_inverted_index.mathematical | 117 |
| abstract_inverted_index.minimization | 7 |
| abstract_inverted_index.propagation, | 21 |
| abstract_inverted_index.reformulates | 2 |
| abstract_inverted_index.characterized | 39 |
| abstract_inverted_index.comprehensive | 12 |
| abstract_inverted_index.computational | 43 |
| abstract_inverted_index.effectiveness | 92 |
| abstract_inverted_index.substantially | 141 |
| abstract_inverted_index.displacements, | 186 |
| abstract_inverted_index.simplification | 101 |
| abstract_inverted_index.configurations. | 84 |
| abstract_inverted_index.one-dimensional | 180 |
| abstract_inverted_index.characterization | 13 |
| abstract_inverted_index.physics-informed | 113 |
| abstract_inverted_index.Kolmogorov-Arnold | 162 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |