Predicting dynamic, motion-related changes in B0 field in the brain at a 7 T MRI using a subject-specific fine-tuned U-net Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2304.08307
Subject movement during the magnetic resonance examination is inevitable and causes not only image artefacts but also deteriorates the homogeneity of the main magnetic field (B0), which is a prerequisite for high quality data. Thus, characterization of changes to B0, e.g. induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities. We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real-time correction. A 3D U-net was trained on in vivo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid-body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine-tuned the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U-net with these data. Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator-equivalent method and proposed method. We therefore conclude that it is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of magnetic resonance acquisitions without the use of navigators.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2304.08307
- https://arxiv.org/pdf/2304.08307
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4366327826
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4366327826Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2304.08307Digital Object Identifier
- Title
-
Predicting dynamic, motion-related changes in B0 field in the brain at a 7 T MRI using a subject-specific fine-tuned U-netWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-17Full publication date if available
- Authors
-
Stanislav Motyka, Paul Weiser, Beata Bachrátá, Lukas Hingerl, Bernhard Strasser, Gilbert Hangel, Eva Niess, Dario Goranovic, Fabian Niess, Maxim Zaitsev, Simon Robinson, Georg Langs, Siegfried Trattnig, Wolfgang BognerList of authors in order
- Landing page
-
https://arxiv.org/abs/2304.08307Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2304.08307Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2304.08307Direct OA link when available
- Concepts
-
Computer science, Homogeneity (statistics), Artificial intelligence, Computer vision, Magnetic resonance imaging, Position (finance), Head (geology), Tracking (education), Movement (music), Image quality, Real-time MRI, Image (mathematics), Acoustics, Machine learning, Physics, Psychology, Radiology, Medicine, Geology, Pedagogy, Finance, Geomorphology, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4366327826 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2304.08307 |
| ids.doi | https://doi.org/10.48550/arxiv.2304.08307 |
| ids.openalex | https://openalex.org/W4366327826 |
| fwci | |
| type | preprint |
| title | Predicting dynamic, motion-related changes in B0 field in the brain at a 7 T MRI using a subject-specific fine-tuned U-net |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10378 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Advanced MRI Techniques and Applications |
| topics[1].id | https://openalex.org/T10522 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Medical Imaging Techniques and Applications |
| topics[2].id | https://openalex.org/T11304 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9972000122070312 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Advanced Neuroimaging Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6686949729919434 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C142259097 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6509205102920532 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5891314 |
| concepts[1].display_name | Homogeneity (statistics) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6350122690200806 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.590782880783081 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C143409427 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5881946682929993 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[4].display_name | Magnetic resonance imaging |
| concepts[5].id | https://openalex.org/C198082294 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5562381148338318 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3399648 |
| concepts[5].display_name | Position (finance) |
| concepts[6].id | https://openalex.org/C2780312720 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5022339820861816 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5689100 |
| concepts[6].display_name | Head (geology) |
| concepts[7].id | https://openalex.org/C2775936607 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5006141662597656 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q466845 |
| concepts[7].display_name | Tracking (education) |
| concepts[8].id | https://openalex.org/C2780226923 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4873221814632416 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q929848 |
| concepts[8].display_name | Movement (music) |
| concepts[9].id | https://openalex.org/C55020928 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4149256944656372 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3813865 |
| concepts[9].display_name | Image quality |
| concepts[10].id | https://openalex.org/C157787499 |
| concepts[10].level | 3 |
| concepts[10].score | 0.41232287883758545 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q13479657 |
| concepts[10].display_name | Real-time MRI |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.23149460554122925 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C24890656 |
| concepts[12].level | 1 |
| concepts[12].score | 0.14665311574935913 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[12].display_name | Acoustics |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1437438726425171 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.13457119464874268 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C15744967 |
| concepts[15].level | 0 |
| concepts[15].score | 0.13305464386940002 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[15].display_name | Psychology |
| concepts[16].id | https://openalex.org/C126838900 |
| concepts[16].level | 1 |
| concepts[16].score | 0.10211491584777832 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[16].display_name | Radiology |
| concepts[17].id | https://openalex.org/C71924100 |
| concepts[17].level | 0 |
| concepts[17].score | 0.10166794061660767 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[17].display_name | Medicine |
| concepts[18].id | https://openalex.org/C127313418 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0979732871055603 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[18].display_name | Geology |
| concepts[19].id | https://openalex.org/C19417346 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[19].display_name | Pedagogy |
| concepts[20].id | https://openalex.org/C10138342 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[20].display_name | Finance |
| concepts[21].id | https://openalex.org/C114793014 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q52109 |
| concepts[21].display_name | Geomorphology |
| concepts[22].id | https://openalex.org/C162324750 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[22].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6686949729919434 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/homogeneity |
| keywords[1].score | 0.6509205102920532 |
| keywords[1].display_name | Homogeneity (statistics) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6350122690200806 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.590782880783081 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/magnetic-resonance-imaging |
| keywords[4].score | 0.5881946682929993 |
| keywords[4].display_name | Magnetic resonance imaging |
| keywords[5].id | https://openalex.org/keywords/position |
| keywords[5].score | 0.5562381148338318 |
| keywords[5].display_name | Position (finance) |
| keywords[6].id | https://openalex.org/keywords/head |
| keywords[6].score | 0.5022339820861816 |
| keywords[6].display_name | Head (geology) |
| keywords[7].id | https://openalex.org/keywords/tracking |
| keywords[7].score | 0.5006141662597656 |
| keywords[7].display_name | Tracking (education) |
| keywords[8].id | https://openalex.org/keywords/movement |
| keywords[8].score | 0.4873221814632416 |
| keywords[8].display_name | Movement (music) |
| keywords[9].id | https://openalex.org/keywords/image-quality |
| keywords[9].score | 0.4149256944656372 |
| keywords[9].display_name | Image quality |
| keywords[10].id | https://openalex.org/keywords/real-time-mri |
| keywords[10].score | 0.41232287883758545 |
| keywords[10].display_name | Real-time MRI |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.23149460554122925 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/acoustics |
| keywords[12].score | 0.14665311574935913 |
| keywords[12].display_name | Acoustics |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.1437438726425171 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.13457119464874268 |
| keywords[14].display_name | Physics |
| keywords[15].id | https://openalex.org/keywords/psychology |
| keywords[15].score | 0.13305464386940002 |
| keywords[15].display_name | Psychology |
| keywords[16].id | https://openalex.org/keywords/radiology |
| keywords[16].score | 0.10211491584777832 |
| keywords[16].display_name | Radiology |
| keywords[17].id | https://openalex.org/keywords/medicine |
| keywords[17].score | 0.10166794061660767 |
| keywords[17].display_name | Medicine |
| keywords[18].id | https://openalex.org/keywords/geology |
| keywords[18].score | 0.0979732871055603 |
| keywords[18].display_name | Geology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2304.08307 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2304.08307 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2304.08307 |
| locations[1].id | doi:10.48550/arxiv.2304.08307 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2304.08307 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5025970080 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6314-316X |
| authorships[0].author.display_name | Stanislav Motyka |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Motyka, Stanislav |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5032479419 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-2503-5696 |
| authorships[1].author.display_name | Paul Weiser |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Weiser, Paul |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5046352499 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3352-8966 |
| authorships[2].author.display_name | Beata Bachrátá |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bachrata, Beata |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5026561466 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1808-8349 |
| authorships[3].author.display_name | Lukas Hingerl |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hingerl, Lukas |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5052834846 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9542-3855 |
| authorships[4].author.display_name | Bernhard Strasser |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Strasser, Bernhard |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5050371154 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3986-3159 |
| authorships[5].author.display_name | Gilbert Hangel |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hangel, Gilbert |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5001196102 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9956-1470 |
| authorships[6].author.display_name | Eva Niess |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Niess, Eva |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5079858855 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0280-2889 |
| authorships[7].author.display_name | Dario Goranovic |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Goranovic, Dario |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5045930596 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-1235-7595 |
| authorships[8].author.display_name | Fabian Niess |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Niess, Fabian |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5046141519 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-7530-1228 |
| authorships[9].author.display_name | Maxim Zaitsev |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Zaitsev, Maxim |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5034195823 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-7463-5162 |
| authorships[10].author.display_name | Simon Robinson |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Robinson, Simon Daniel |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5060814361 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-5536-6873 |
| authorships[11].author.display_name | Georg Langs |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Langs, Georg |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5009274288 |
| authorships[12].author.orcid | https://orcid.org/0000-0003-1623-3303 |
| authorships[12].author.display_name | Siegfried Trattnig |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Trattnig, Siegfried |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5023652216 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-0130-3463 |
| authorships[13].author.display_name | Wolfgang Bogner |
| authorships[13].author_position | last |
| authorships[13].raw_author_name | Bogner, Wolfgang |
| authorships[13].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2304.08307 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-04-20T00:00:00 |
| display_name | Predicting dynamic, motion-related changes in B0 field in the brain at a 7 T MRI using a subject-specific fine-tuned U-net |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10378 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Advanced MRI Techniques and Applications |
| related_works | https://openalex.org/W1999392235, https://openalex.org/W2075537321, https://openalex.org/W2055668825, https://openalex.org/W2059493168, https://openalex.org/W2371593620, https://openalex.org/W2156037511, https://openalex.org/W2572678357, https://openalex.org/W2019481703, https://openalex.org/W2024930283, https://openalex.org/W1568996612 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2304.08307 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2304.08307 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2304.08307 |
| primary_location.id | pmh:oai:arXiv.org:2304.08307 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2304.08307 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2304.08307 |
| publication_date | 2023-04-17 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 84 |
| abstract_inverted_index.a | 28, 58, 113, 120, 150 |
| abstract_inverted_index.3D | 85 |
| abstract_inverted_index.7T | 93 |
| abstract_inverted_index.B0 | 54, 100, 132, 174, 217 |
| abstract_inverted_index.MR | 48 |
| abstract_inverted_index.We | 56, 139, 208 |
| abstract_inverted_index.an | 106, 201 |
| abstract_inverted_index.at | 105, 112, 134 |
| abstract_inverted_index.be | 233 |
| abstract_inverted_index.by | 42, 118, 148 |
| abstract_inverted_index.in | 90 |
| abstract_inverted_index.is | 7, 27, 45, 213 |
| abstract_inverted_index.it | 212 |
| abstract_inverted_index.of | 20, 36, 73, 99, 131, 153, 156, 239, 246 |
| abstract_inverted_index.on | 89, 123 |
| abstract_inverted_index.or | 80 |
| abstract_inverted_index.to | 38, 53, 63, 77, 145, 171, 215, 235 |
| abstract_inverted_index.B0, | 39 |
| abstract_inverted_index.MRI | 94 |
| abstract_inverted_index.Our | 167 |
| abstract_inverted_index.The | 96, 128 |
| abstract_inverted_index.and | 9, 102, 109, 160, 186, 194, 205 |
| abstract_inverted_index.are | 51 |
| abstract_inverted_index.but | 15 |
| abstract_inverted_index.for | 30, 47, 189 |
| abstract_inverted_index.new | 136 |
| abstract_inverted_index.not | 11 |
| abstract_inverted_index.the | 3, 18, 21, 68, 71, 74, 124, 135, 142, 157, 162, 187, 237, 244 |
| abstract_inverted_index.use | 245 |
| abstract_inverted_index.via | 177 |
| abstract_inverted_index.was | 87, 169 |
| abstract_inverted_index.also | 16 |
| abstract_inverted_index.and, | 223 |
| abstract_inverted_index.deep | 59 |
| abstract_inverted_index.e.g. | 40 |
| abstract_inverted_index.each | 146 |
| abstract_inverted_index.even | 81 |
| abstract_inverted_index.from | 70, 182, 219 |
| abstract_inverted_index.head | 75, 115, 137, 154 |
| abstract_inverted_index.high | 31 |
| abstract_inverted_index.main | 22 |
| abstract_inverted_index.maps | 101, 133, 218 |
| abstract_inverted_index.need | 188 |
| abstract_inverted_index.only | 12 |
| abstract_inverted_index.such | 65 |
| abstract_inverted_index.that | 50, 211 |
| abstract_inverted_index.this | 230 |
| abstract_inverted_index.used | 234 |
| abstract_inverted_index.vivo | 91 |
| abstract_inverted_index.when | 224 |
| abstract_inverted_index.with | 164, 226 |
| abstract_inverted_index.(B0), | 25 |
| abstract_inverted_index.Thus, | 34 |
| abstract_inverted_index.U-net | 86, 163 |
| abstract_inverted_index.based | 61 |
| abstract_inverted_index.brain | 69, 92 |
| abstract_inverted_index.could | 232 |
| abstract_inverted_index.data. | 33, 95, 166 |
| abstract_inverted_index.field | 24, 175 |
| abstract_inverted_index.given | 158 |
| abstract_inverted_index.image | 13 |
| abstract_inverted_index.input | 97 |
| abstract_inverted_index.prone | 52 |
| abstract_inverted_index.rigid | 220 |
| abstract_inverted_index.these | 165 |
| abstract_inverted_index.which | 26, 180 |
| abstract_inverted_index.causes | 10 |
| abstract_inverted_index.change | 72 |
| abstract_inverted_index.during | 2 |
| abstract_inverted_index.images | 104, 111 |
| abstract_inverted_index.method | 62, 204 |
| abstract_inverted_index.number | 152 |
| abstract_inverted_index.output | 129 |
| abstract_inverted_index.showed | 197 |
| abstract_inverted_index.suffer | 181 |
| abstract_inverted_index.within | 67 |
| abstract_inverted_index.Subject | 0 |
| abstract_inverted_index.between | 200 |
| abstract_inverted_index.changes | 37, 66 |
| abstract_inverted_index.dynamic | 173 |
| abstract_inverted_index.further | 140 |
| abstract_inverted_index.image). | 127 |
| abstract_inverted_index.improve | 236 |
| abstract_inverted_index.induced | 41 |
| abstract_inverted_index.initial | 107, 125 |
| abstract_inverted_index.limited | 151, 183 |
| abstract_inverted_index.mapping | 176 |
| abstract_inverted_index.method. | 207 |
| abstract_inverted_index.network | 143 |
| abstract_inverted_index.patient | 43 |
| abstract_inverted_index.predict | 64, 216 |
| abstract_inverted_index.propose | 57 |
| abstract_inverted_index.quality | 32, 238 |
| abstract_inverted_index.similar | 198 |
| abstract_inverted_index.spatial | 184 |
| abstract_inverted_index.subject | 147, 221 |
| abstract_inverted_index.trained | 88, 161 |
| abstract_inverted_index.weights | 144 |
| abstract_inverted_index.without | 243 |
| abstract_inverted_index.applying | 119 |
| abstract_inverted_index.approach | 168 |
| abstract_inverted_index.combined | 225 |
| abstract_inverted_index.compared | 170 |
| abstract_inverted_index.conclude | 210 |
| abstract_inverted_index.external | 227 |
| abstract_inverted_index.feasible | 214 |
| abstract_inverted_index.learning | 60 |
| abstract_inverted_index.magnetic | 4, 23, 240 |
| abstract_inverted_index.movement | 1, 222 |
| abstract_inverted_index.position | 76, 116 |
| abstract_inverted_index.proposed | 206 |
| abstract_inverted_index.sequence | 191 |
| abstract_inverted_index.subject, | 159 |
| abstract_inverted_index.tracking | 228 |
| abstract_inverted_index.(obtained | 117 |
| abstract_inverted_index.artefacts | 14 |
| abstract_inverted_index.consisted | 98, 130 |
| abstract_inverted_index.different | 114 |
| abstract_inverted_index.hardware, | 229 |
| abstract_inverted_index.important | 46 |
| abstract_inverted_index.measuring | 149 |
| abstract_inverted_index.movement, | 44 |
| abstract_inverted_index.position, | 108 |
| abstract_inverted_index.positions | 155 |
| abstract_inverted_index.real-time | 82 |
| abstract_inverted_index.resonance | 5, 241 |
| abstract_inverted_index.therefore | 209 |
| abstract_inverted_index.anatomical | 103, 110, 126 |
| abstract_inverted_index.comparison | 196 |
| abstract_inverted_index.facilitate | 78 |
| abstract_inverted_index.fine-tuned | 141 |
| abstract_inverted_index.inevitable | 8 |
| abstract_inverted_index.positions. | 138 |
| abstract_inverted_index.resolution | 185 |
| abstract_inverted_index.rigid-body | 121 |
| abstract_inverted_index.Qualitative | 193 |
| abstract_inverted_index.correction. | 83 |
| abstract_inverted_index.established | 172 |
| abstract_inverted_index.examination | 6 |
| abstract_inverted_index.homogeneity | 19 |
| abstract_inverted_index.information | 231 |
| abstract_inverted_index.interleaved | 178, 202 |
| abstract_inverted_index.navigators, | 179 |
| abstract_inverted_index.navigators. | 247 |
| abstract_inverted_index.performance | 199 |
| abstract_inverted_index.undesirable | 190 |
| abstract_inverted_index.acquisitions | 242 |
| abstract_inverted_index.applications | 49 |
| abstract_inverted_index.deteriorates | 17 |
| abstract_inverted_index.prerequisite | 29 |
| abstract_inverted_index.quantitative | 195 |
| abstract_inverted_index.retrospective | 79 |
| abstract_inverted_index.modifications. | 192 |
| abstract_inverted_index.transformation | 122 |
| abstract_inverted_index.characterization | 35 |
| abstract_inverted_index.inhomogeneities. | 55 |
| abstract_inverted_index.navigator-equivalent | 203 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 14 |
| citation_normalized_percentile |