Predicting Early-Onset Colorectal Cancer in Individuals Below Screening Age Using Machine Learning and Real-World Data: Case Control Study Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2196/64506
Background Colorectal cancer is now the leading cause of cancer-related deaths among young Americans. Accurate early prediction and a thorough understanding of the risk factors for early-onset colorectal cancer (EOCRC) are vital for effective prevention and treatment, particularly for patients below the recommended screening age. Objective Our study aims to predict EOCRC using machine learning (ML) and structured electronic health record data for individuals under the screening age of 45 years, with the aim of exploring potential risk and protective factors that could support early diagnosis. Methods We identified a cohort of patients under the age of 45 years from the OneFlorida+ Clinical Research Consortium. Given the distinct pathology of colon cancer (CC) and rectal cancer (RC), we created separate prediction models for each cancer type with various ML algorithms. We assessed multiple prediction time windows (ie, 0, 1, 3, and 5 y) and ensured robustness through propensity score matching to account for confounding variables including sex, race, ethnicity, and birth year. We conducted a comprehensive performance evaluation using metrics including area under the curve (AUC), sensitivity, specificity, positive predictive value, negative predictive value, and F 1 -score. Both linear (ie, logistic regression, support vector machine) and nonlinear (ie, Extreme Gradient Boosting and random forest) models were assessed to enable rigorous comparison across different classification strategies. In addition, we used the Shapley Additive Explanations to interpret the models and identify key risk and protective factors associated with EOCRC. Results The final cohort included 1358 CC cases with 6790 matched controls, and 560 RC cases with 2800 matched controls. The RC group had a more balanced sex distribution (2:3 male-to-female) compared to the CC group (2:5 male-to-female), and both groups showed diverse racial and ethnic representation. Our predictive models demonstrated reasonable results, with AUC scores for CC prediction of 0.811, 0.748, 0.689, and 0.686 at 0, 1, 3, and 5 years before diagnosis, respectively. For RC prediction, AUC scores were 0.829, 0.771, 0.727, and 0.721 across the same time windows. Key predictive features across both cancer types included immune and digestive system disorders, secondary malignancies, and underweight status. In addition, blood diseases emerged as prominent indicators specifically for CC. Conclusions Our findings demonstrate the potential of ML models leveraging electronic health record data to facilitate the early prediction of EOCRC in individuals under 45 years. By uncovering important risk factors and achieving promising predictive performance, this study provides preliminary insights that could inform future efforts toward earlier detection and prevention in younger populations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2196/64506
- OA Status
- gold
- Cited By
- 1
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410946881
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410946881Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2196/64506Digital Object Identifier
- Title
-
Predicting Early-Onset Colorectal Cancer in Individuals Below Screening Age Using Machine Learning and Real-World Data: Case Control StudyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-02Full publication date if available
- Authors
-
Chengkun Sun, Erin M. Mobley, Michael B. Quillen, Max Parker, Meghan Daly, Rui Wang, Isabela Visintin, Ziad T. Awad, Jennifer N. Fishe, Alexander S. Parker, Thomas J. George, Jiang Bian, Jie XuList of authors in order
- Landing page
-
https://doi.org/10.2196/64506Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2196/64506Direct OA link when available
- Concepts
-
Logistic regression, Medicine, Random forest, Cohort, Machine learning, Confounding, Colorectal cancer, Artificial intelligence, Propensity score matching, Nomogram, Cancer, Oncology, Internal medicine, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410946881 |
|---|---|
| doi | https://doi.org/10.2196/64506 |
| ids.doi | https://doi.org/10.2196/64506 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40537065 |
| ids.openalex | https://openalex.org/W4410946881 |
| fwci | 3.27053909 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D008297 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Male |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D005260 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Female |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000069550 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Machine Learning |
| mesh[4].qualifier_ui | Q000175 |
| mesh[4].descriptor_ui | D015179 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | diagnosis |
| mesh[4].descriptor_name | Colorectal Neoplasms |
| mesh[5].qualifier_ui | Q000453 |
| mesh[5].descriptor_ui | D015179 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | epidemiology |
| mesh[5].descriptor_name | Colorectal Neoplasms |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000328 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Adult |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D016022 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Case-Control Studies |
| mesh[8].qualifier_ui | Q000379 |
| mesh[8].descriptor_ui | D055088 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | methods |
| mesh[8].descriptor_name | Early Detection of Cancer |
| mesh[9].qualifier_ui | Q000706 |
| mesh[9].descriptor_ui | D055088 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | statistics & numerical data |
| mesh[9].descriptor_name | Early Detection of Cancer |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D008875 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Middle Aged |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D012307 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Risk Factors |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D017668 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Age of Onset |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D057286 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Electronic Health Records |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000367 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Age Factors |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D006801 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Humans |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D008297 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Male |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D005260 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Female |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D000069550 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Machine Learning |
| mesh[19].qualifier_ui | Q000175 |
| mesh[19].descriptor_ui | D015179 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | diagnosis |
| mesh[19].descriptor_name | Colorectal Neoplasms |
| mesh[20].qualifier_ui | Q000453 |
| mesh[20].descriptor_ui | D015179 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | epidemiology |
| mesh[20].descriptor_name | Colorectal Neoplasms |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D000328 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Adult |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D016022 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Case-Control Studies |
| mesh[23].qualifier_ui | Q000379 |
| mesh[23].descriptor_ui | D055088 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | methods |
| mesh[23].descriptor_name | Early Detection of Cancer |
| mesh[24].qualifier_ui | Q000706 |
| mesh[24].descriptor_ui | D055088 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | statistics & numerical data |
| mesh[24].descriptor_name | Early Detection of Cancer |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D008875 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Middle Aged |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D012307 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Risk Factors |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D017668 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Age of Onset |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D057286 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Electronic Health Records |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D000367 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Age Factors |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D006801 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Humans |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D008297 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Male |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D005260 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Female |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D000069550 |
| mesh[33].is_major_topic | True |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Machine Learning |
| mesh[34].qualifier_ui | Q000175 |
| mesh[34].descriptor_ui | D015179 |
| mesh[34].is_major_topic | True |
| mesh[34].qualifier_name | diagnosis |
| mesh[34].descriptor_name | Colorectal Neoplasms |
| mesh[35].qualifier_ui | Q000453 |
| mesh[35].descriptor_ui | D015179 |
| mesh[35].is_major_topic | True |
| mesh[35].qualifier_name | epidemiology |
| mesh[35].descriptor_name | Colorectal Neoplasms |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D000328 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Adult |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D016022 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Case-Control Studies |
| mesh[38].qualifier_ui | Q000379 |
| mesh[38].descriptor_ui | D055088 |
| mesh[38].is_major_topic | True |
| mesh[38].qualifier_name | methods |
| mesh[38].descriptor_name | Early Detection of Cancer |
| mesh[39].qualifier_ui | Q000706 |
| mesh[39].descriptor_ui | D055088 |
| mesh[39].is_major_topic | True |
| mesh[39].qualifier_name | statistics & numerical data |
| mesh[39].descriptor_name | Early Detection of Cancer |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D008875 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Middle Aged |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D012307 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Risk Factors |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D017668 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Age of Onset |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D057286 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Electronic Health Records |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D000367 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Age Factors |
| type | article |
| title | Predicting Early-Onset Colorectal Cancer in Individuals Below Screening Age Using Machine Learning and Real-World Data: Case Control Study |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | e64506 |
| biblio.first_page | e64506 |
| topics[0].id | https://openalex.org/T10552 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2730 |
| topics[0].subfield.display_name | Oncology |
| topics[0].display_name | Colorectal Cancer Screening and Detection |
| topics[1].id | https://openalex.org/T11369 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9923999905586243 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2734 |
| topics[1].subfield.display_name | Pathology and Forensic Medicine |
| topics[1].display_name | Genetic factors in colorectal cancer |
| topics[2].id | https://openalex.org/T10231 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9847000241279602 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2730 |
| topics[2].subfield.display_name | Oncology |
| topics[2].display_name | Pancreatic and Hepatic Oncology Research |
| is_xpac | False |
| apc_list.value | 1873 |
| apc_list.currency | USD |
| apc_list.value_usd | 1873 |
| apc_paid.value | 1873 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1873 |
| concepts[0].id | https://openalex.org/C151956035 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6617645025253296 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[0].display_name | Logistic regression |
| concepts[1].id | https://openalex.org/C71924100 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5998642444610596 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[1].display_name | Medicine |
| concepts[2].id | https://openalex.org/C169258074 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5933826565742493 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[2].display_name | Random forest |
| concepts[3].id | https://openalex.org/C72563966 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5497806072235107 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1303415 |
| concepts[3].display_name | Cohort |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5301507115364075 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C77350462 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5220039486885071 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1125472 |
| concepts[5].display_name | Confounding |
| concepts[6].id | https://openalex.org/C526805850 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4964352250099182 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q188874 |
| concepts[6].display_name | Colorectal cancer |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.47241297364234924 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C17923572 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46982431411743164 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7250160 |
| concepts[8].display_name | Propensity score matching |
| concepts[9].id | https://openalex.org/C34626388 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4365997612476349 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q721129 |
| concepts[9].display_name | Nomogram |
| concepts[10].id | https://openalex.org/C121608353 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4220172166824341 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[10].display_name | Cancer |
| concepts[11].id | https://openalex.org/C143998085 |
| concepts[11].level | 1 |
| concepts[11].score | 0.34712743759155273 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q162555 |
| concepts[11].display_name | Oncology |
| concepts[12].id | https://openalex.org/C126322002 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3244408369064331 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[12].display_name | Internal medicine |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.26618197560310364 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/logistic-regression |
| keywords[0].score | 0.6617645025253296 |
| keywords[0].display_name | Logistic regression |
| keywords[1].id | https://openalex.org/keywords/medicine |
| keywords[1].score | 0.5998642444610596 |
| keywords[1].display_name | Medicine |
| keywords[2].id | https://openalex.org/keywords/random-forest |
| keywords[2].score | 0.5933826565742493 |
| keywords[2].display_name | Random forest |
| keywords[3].id | https://openalex.org/keywords/cohort |
| keywords[3].score | 0.5497806072235107 |
| keywords[3].display_name | Cohort |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5301507115364075 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/confounding |
| keywords[5].score | 0.5220039486885071 |
| keywords[5].display_name | Confounding |
| keywords[6].id | https://openalex.org/keywords/colorectal-cancer |
| keywords[6].score | 0.4964352250099182 |
| keywords[6].display_name | Colorectal cancer |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.47241297364234924 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/propensity-score-matching |
| keywords[8].score | 0.46982431411743164 |
| keywords[8].display_name | Propensity score matching |
| keywords[9].id | https://openalex.org/keywords/nomogram |
| keywords[9].score | 0.4365997612476349 |
| keywords[9].display_name | Nomogram |
| keywords[10].id | https://openalex.org/keywords/cancer |
| keywords[10].score | 0.4220172166824341 |
| keywords[10].display_name | Cancer |
| keywords[11].id | https://openalex.org/keywords/oncology |
| keywords[11].score | 0.34712743759155273 |
| keywords[11].display_name | Oncology |
| keywords[12].id | https://openalex.org/keywords/internal-medicine |
| keywords[12].score | 0.3244408369064331 |
| keywords[12].display_name | Internal medicine |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.26618197560310364 |
| keywords[13].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.2196/64506 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210213531 |
| locations[0].source.issn | 2369-1999 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2369-1999 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | JMIR Cancer |
| locations[0].source.host_organization | https://openalex.org/P4310320608 |
| locations[0].source.host_organization_name | JMIR Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320608 |
| locations[0].source.host_organization_lineage_names | JMIR Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | JMIR Cancer |
| locations[0].landing_page_url | https://doi.org/10.2196/64506 |
| locations[1].id | pmid:40537065 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | JMIR cancer |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40537065 |
| locations[2].id | pmh:oai:doaj.org/article:2b48754b76e540f1bf7b855604cefc33 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | JMIR Cancer, Vol 11, Pp e64506-e64506 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/2b48754b76e540f1bf7b855604cefc33 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12200807 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | JMIR Cancer |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12200807 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5112674908 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2095-9369 |
| authorships[0].author.display_name | Chengkun Sun |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Road, Office 7020, Gainesville, FL, 32611, United States, 1 3526279467. |
| authorships[0].institutions[0].id | https://openalex.org/I33213144 |
| authorships[0].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Florida |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chengkun Sun |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Road, Office 7020, Gainesville, FL, 32611, United States, 1 3526279467. |
| authorships[1].author.id | https://openalex.org/A5086463593 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6278-6593 |
| authorships[1].author.display_name | Erin M. Mobley |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2800717037 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Florida Health Cancer Center, University of Florida, Gainesville, FL, United States. |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I33213144 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Surgery, University of Florida, Jacksonville, FL, United States. |
| authorships[1].institutions[0].id | https://openalex.org/I33213144 |
| authorships[1].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Florida |
| authorships[1].institutions[1].id | https://openalex.org/I2800717037 |
| authorships[1].institutions[1].ror | https://ror.org/04tk2gy88 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I2800717037 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | University of Florida Health |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Erin Mobley |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Surgery, University of Florida, Jacksonville, FL, United States., University of Florida Health Cancer Center, University of Florida, Gainesville, FL, United States. |
| authorships[2].author.id | https://openalex.org/A5005833821 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Michael B. Quillen |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Medicine, University of Florida, Gainesville, FL, United States. |
| authorships[2].institutions[0].id | https://openalex.org/I33213144 |
| authorships[2].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Florida |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Michael Quillen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Medicine, University of Florida, Gainesville, FL, United States. |
| authorships[3].author.id | https://openalex.org/A5114214387 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Max Parker |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Medicine, University of Florida, Gainesville, FL, United States. |
| authorships[3].institutions[0].id | https://openalex.org/I33213144 |
| authorships[3].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Florida |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Max Parker |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Medicine, University of Florida, Gainesville, FL, United States. |
| authorships[4].author.id | https://openalex.org/A5030032528 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Meghan Daly |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Surgery, University of Florida, Jacksonville, FL, United States. |
| authorships[4].institutions[0].id | https://openalex.org/I33213144 |
| authorships[4].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Florida |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Meghan Daly |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Surgery, University of Florida, Jacksonville, FL, United States. |
| authorships[5].author.id | https://openalex.org/A5100431358 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8320-6500 |
| authorships[5].author.display_name | Rui Wang |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[5].affiliations[0].raw_affiliation_string | Center for Data Solutions, University of Florida, Jacksonville, FL, United States. |
| authorships[5].institutions[0].id | https://openalex.org/I33213144 |
| authorships[5].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Florida |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Rui Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Center for Data Solutions, University of Florida, Jacksonville, FL, United States. |
| authorships[6].author.id | https://openalex.org/A5114214388 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Isabela Visintin |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Surgery, University of Florida, Jacksonville, FL, United States. |
| authorships[6].institutions[0].id | https://openalex.org/I33213144 |
| authorships[6].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Florida |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Isabela Visintin |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Surgery, University of Florida, Jacksonville, FL, United States. |
| authorships[7].author.id | https://openalex.org/A5050027994 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-6555-6240 |
| authorships[7].author.display_name | Ziad T. Awad |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Surgery, University of Florida, Jacksonville, FL, United States. |
| authorships[7].institutions[0].id | https://openalex.org/I33213144 |
| authorships[7].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of Florida |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Ziad Awad |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Surgery, University of Florida, Jacksonville, FL, United States. |
| authorships[8].author.id | https://openalex.org/A5023664343 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-9037-8143 |
| authorships[8].author.display_name | Jennifer N. Fishe |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Emergency Medicine, University of Florida, Jacksonville, FL, United States. |
| authorships[8].institutions[0].id | https://openalex.org/I33213144 |
| authorships[8].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | University of Florida |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Jennifer Fishe |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Emergency Medicine, University of Florida, Jacksonville, FL, United States. |
| authorships[9].author.id | https://openalex.org/A5058379826 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-6820-274X |
| authorships[9].author.display_name | Alexander S. Parker |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I33213144, https://openalex.org/I94062374 |
| authorships[9].affiliations[0].raw_affiliation_string | College of Medicine, University of Florida, Jacksonville, FL, United States. |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I2800717037 |
| authorships[9].affiliations[1].raw_affiliation_string | University of Florida Health Cancer Center, University of Florida, Gainesville, FL, United States. |
| authorships[9].institutions[0].id | https://openalex.org/I94062374 |
| authorships[9].institutions[0].ror | https://ror.org/010bgev76 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I94062374 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Florida College |
| authorships[9].institutions[1].id | https://openalex.org/I33213144 |
| authorships[9].institutions[1].ror | https://ror.org/02y3ad647 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I33213144 |
| authorships[9].institutions[1].country_code | US |
| authorships[9].institutions[1].display_name | University of Florida |
| authorships[9].institutions[2].id | https://openalex.org/I2800717037 |
| authorships[9].institutions[2].ror | https://ror.org/04tk2gy88 |
| authorships[9].institutions[2].type | education |
| authorships[9].institutions[2].lineage | https://openalex.org/I2800717037 |
| authorships[9].institutions[2].country_code | US |
| authorships[9].institutions[2].display_name | University of Florida Health |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Alexander Parker |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | College of Medicine, University of Florida, Jacksonville, FL, United States., University of Florida Health Cancer Center, University of Florida, Gainesville, FL, United States. |
| authorships[10].author.id | https://openalex.org/A5020154592 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-6249-9180 |
| authorships[10].author.display_name | Thomas J. George |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I2800717037 |
| authorships[10].affiliations[0].raw_affiliation_string | University of Florida Health Cancer Center, University of Florida, Gainesville, FL, United States. |
| authorships[10].affiliations[1].institution_ids | https://openalex.org/I33213144 |
| authorships[10].affiliations[1].raw_affiliation_string | Department of Medicine, University of Florida, Gainesville, FL, United States. |
| authorships[10].institutions[0].id | https://openalex.org/I33213144 |
| authorships[10].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | University of Florida |
| authorships[10].institutions[1].id | https://openalex.org/I2800717037 |
| authorships[10].institutions[1].ror | https://ror.org/04tk2gy88 |
| authorships[10].institutions[1].type | education |
| authorships[10].institutions[1].lineage | https://openalex.org/I2800717037 |
| authorships[10].institutions[1].country_code | US |
| authorships[10].institutions[1].display_name | University of Florida Health |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Thomas George |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Department of Medicine, University of Florida, Gainesville, FL, United States., University of Florida Health Cancer Center, University of Florida, Gainesville, FL, United States. |
| authorships[11].author.id | https://openalex.org/A5030951014 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-2238-5429 |
| authorships[11].author.display_name | Jiang Bian |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I55769427 |
| authorships[11].affiliations[0].raw_affiliation_string | Indiana University Indianapolis, Indianapolis, IN, United States. |
| authorships[11].institutions[0].id | https://openalex.org/I55769427 |
| authorships[11].institutions[0].ror | https://ror.org/05gxnyn08 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I55769427, https://openalex.org/I592451 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | Indiana University – Purdue University Indianapolis |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Jiang Bian |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Indiana University Indianapolis, Indianapolis, IN, United States. |
| authorships[12].author.id | https://openalex.org/A5085531312 |
| authorships[12].author.orcid | https://orcid.org/0000-0001-5291-5198 |
| authorships[12].author.display_name | Jie Xu |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[12].affiliations[0].raw_affiliation_string | Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Road, Office 7020, Gainesville, FL, 32611, United States, 1 3526279467. |
| authorships[12].institutions[0].id | https://openalex.org/I33213144 |
| authorships[12].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | University of Florida |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | Jie Xu |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Road, Office 7020, Gainesville, FL, 32611, United States, 1 3526279467. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2196/64506 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-06-03T00:00:00 |
| display_name | Predicting Early-Onset Colorectal Cancer in Individuals Below Screening Age Using Machine Learning and Real-World Data: Case Control Study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10552 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2730 |
| primary_topic.subfield.display_name | Oncology |
| primary_topic.display_name | Colorectal Cancer Screening and Detection |
| related_works | https://openalex.org/W101468167, https://openalex.org/W2396000345, https://openalex.org/W4232168831, https://openalex.org/W2009646395, https://openalex.org/W2108514281, https://openalex.org/W2891070741, https://openalex.org/W2345342558, https://openalex.org/W3168066730, https://openalex.org/W2166919242, https://openalex.org/W3089847781 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.2196/64506 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210213531 |
| best_oa_location.source.issn | 2369-1999 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2369-1999 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | JMIR Cancer |
| best_oa_location.source.host_organization | https://openalex.org/P4310320608 |
| best_oa_location.source.host_organization_name | JMIR Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320608 |
| best_oa_location.source.host_organization_lineage_names | JMIR Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | JMIR Cancer |
| best_oa_location.landing_page_url | https://doi.org/10.2196/64506 |
| primary_location.id | doi:10.2196/64506 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210213531 |
| primary_location.source.issn | 2369-1999 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2369-1999 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | JMIR Cancer |
| primary_location.source.host_organization | https://openalex.org/P4310320608 |
| primary_location.source.host_organization_name | JMIR Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320608 |
| primary_location.source.host_organization_lineage_names | JMIR Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | JMIR Cancer |
| primary_location.landing_page_url | https://doi.org/10.2196/64506 |
| publication_date | 2025-06-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4322719806, https://openalex.org/W3007297990, https://openalex.org/W4231576061, https://openalex.org/W3216550296, https://openalex.org/W3014031346, https://openalex.org/W2997822868, https://openalex.org/W2987654150, https://openalex.org/W4385420940, https://openalex.org/W3122334537, https://openalex.org/W4223430324, https://openalex.org/W2971130507, https://openalex.org/W4321595817, https://openalex.org/W2998807005, https://openalex.org/W3013783227, https://openalex.org/W3112048136, https://openalex.org/W2979089242, https://openalex.org/W4221116282, https://openalex.org/W2889522041, https://openalex.org/W2765619636, https://openalex.org/W2556625312, https://openalex.org/W4366085127, https://openalex.org/W2988699204, https://openalex.org/W2238461883, https://openalex.org/W3186606013, https://openalex.org/W1998883620, https://openalex.org/W2969967802, https://openalex.org/W2040228556, https://openalex.org/W2923287877, https://openalex.org/W3144015606, https://openalex.org/W3000376411, https://openalex.org/W3032885674, https://openalex.org/W3095990913, https://openalex.org/W2400773242, https://openalex.org/W2127129197, https://openalex.org/W4200212107, https://openalex.org/W4311862982, https://openalex.org/W4206629261, https://openalex.org/W3120118518, https://openalex.org/W2433575101 |
| referenced_works_count | 39 |
| abstract_inverted_index.1 | 187 |
| abstract_inverted_index.5 | 142, 309 |
| abstract_inverted_index.F | 186 |
| abstract_inverted_index.a | 19, 90, 165, 263 |
| abstract_inverted_index.0, | 138, 305 |
| abstract_inverted_index.1, | 139, 306 |
| abstract_inverted_index.3, | 140, 307 |
| abstract_inverted_index.45 | 70, 98, 383 |
| abstract_inverted_index.By | 385 |
| abstract_inverted_index.CC | 245, 273, 296 |
| abstract_inverted_index.In | 217, 348 |
| abstract_inverted_index.ML | 129, 366 |
| abstract_inverted_index.RC | 253, 260, 315 |
| abstract_inverted_index.We | 88, 131, 163 |
| abstract_inverted_index.as | 353 |
| abstract_inverted_index.at | 304 |
| abstract_inverted_index.in | 380, 410 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.of | 9, 22, 69, 75, 92, 97, 110, 298, 365, 378 |
| abstract_inverted_index.to | 50, 151, 209, 225, 271, 373 |
| abstract_inverted_index.we | 118, 219 |
| abstract_inverted_index.y) | 143 |
| abstract_inverted_index.560 | 252 |
| abstract_inverted_index.AUC | 293, 317 |
| abstract_inverted_index.CC. | 358 |
| abstract_inverted_index.For | 314 |
| abstract_inverted_index.Key | 330 |
| abstract_inverted_index.Our | 47, 286, 360 |
| abstract_inverted_index.The | 240, 259 |
| abstract_inverted_index.age | 68, 96 |
| abstract_inverted_index.aim | 74 |
| abstract_inverted_index.and | 18, 36, 57, 79, 114, 141, 144, 160, 185, 197, 203, 229, 233, 251, 277, 283, 302, 308, 323, 339, 345, 390, 408 |
| abstract_inverted_index.are | 31 |
| abstract_inverted_index.for | 26, 33, 39, 63, 123, 153, 295, 357 |
| abstract_inverted_index.had | 262 |
| abstract_inverted_index.key | 231 |
| abstract_inverted_index.now | 5 |
| abstract_inverted_index.sex | 266 |
| abstract_inverted_index.the | 6, 23, 42, 66, 73, 95, 101, 107, 174, 221, 227, 272, 326, 363, 375 |
| abstract_inverted_index.(2:3 | 268 |
| abstract_inverted_index.(2:5 | 275 |
| abstract_inverted_index.(CC) | 113 |
| abstract_inverted_index.(ML) | 56 |
| abstract_inverted_index.(ie, | 137, 191, 199 |
| abstract_inverted_index.1358 | 244 |
| abstract_inverted_index.2800 | 256 |
| abstract_inverted_index.6790 | 248 |
| abstract_inverted_index.Both | 189 |
| abstract_inverted_index.age. | 45 |
| abstract_inverted_index.aims | 49 |
| abstract_inverted_index.area | 172 |
| abstract_inverted_index.both | 278, 334 |
| abstract_inverted_index.data | 62, 372 |
| abstract_inverted_index.each | 124 |
| abstract_inverted_index.from | 100 |
| abstract_inverted_index.more | 264 |
| abstract_inverted_index.risk | 24, 78, 232, 388 |
| abstract_inverted_index.same | 327 |
| abstract_inverted_index.sex, | 157 |
| abstract_inverted_index.that | 82, 400 |
| abstract_inverted_index.this | 395 |
| abstract_inverted_index.time | 135, 328 |
| abstract_inverted_index.type | 126 |
| abstract_inverted_index.used | 220 |
| abstract_inverted_index.were | 207, 319 |
| abstract_inverted_index.with | 72, 127, 237, 247, 255, 292 |
| abstract_inverted_index.(RC), | 117 |
| abstract_inverted_index.0.686 | 303 |
| abstract_inverted_index.0.721 | 324 |
| abstract_inverted_index.EOCRC | 52, 379 |
| abstract_inverted_index.Given | 106 |
| abstract_inverted_index.among | 12 |
| abstract_inverted_index.below | 41 |
| abstract_inverted_index.birth | 161 |
| abstract_inverted_index.blood | 350 |
| abstract_inverted_index.cases | 246, 254 |
| abstract_inverted_index.cause | 8 |
| abstract_inverted_index.colon | 111 |
| abstract_inverted_index.could | 83, 401 |
| abstract_inverted_index.curve | 175 |
| abstract_inverted_index.early | 16, 85, 376 |
| abstract_inverted_index.final | 241 |
| abstract_inverted_index.group | 261, 274 |
| abstract_inverted_index.race, | 158 |
| abstract_inverted_index.score | 149 |
| abstract_inverted_index.study | 48, 396 |
| abstract_inverted_index.types | 336 |
| abstract_inverted_index.under | 65, 94, 173, 382 |
| abstract_inverted_index.using | 53, 169 |
| abstract_inverted_index.vital | 32 |
| abstract_inverted_index.year. | 162 |
| abstract_inverted_index.years | 99, 310 |
| abstract_inverted_index.young | 13 |
| abstract_inverted_index.(AUC), | 176 |
| abstract_inverted_index.0.689, | 301 |
| abstract_inverted_index.0.727, | 322 |
| abstract_inverted_index.0.748, | 300 |
| abstract_inverted_index.0.771, | 321 |
| abstract_inverted_index.0.811, | 299 |
| abstract_inverted_index.0.829, | 320 |
| abstract_inverted_index.EOCRC. | 238 |
| abstract_inverted_index.across | 213, 325, 333 |
| abstract_inverted_index.before | 311 |
| abstract_inverted_index.cancer | 3, 29, 112, 116, 125, 335 |
| abstract_inverted_index.cohort | 91, 242 |
| abstract_inverted_index.deaths | 11 |
| abstract_inverted_index.enable | 210 |
| abstract_inverted_index.ethnic | 284 |
| abstract_inverted_index.future | 403 |
| abstract_inverted_index.groups | 279 |
| abstract_inverted_index.health | 60, 370 |
| abstract_inverted_index.immune | 338 |
| abstract_inverted_index.inform | 402 |
| abstract_inverted_index.linear | 190 |
| abstract_inverted_index.models | 122, 206, 228, 288, 367 |
| abstract_inverted_index.racial | 282 |
| abstract_inverted_index.random | 204 |
| abstract_inverted_index.record | 61, 371 |
| abstract_inverted_index.rectal | 115 |
| abstract_inverted_index.scores | 294, 318 |
| abstract_inverted_index.showed | 280 |
| abstract_inverted_index.system | 341 |
| abstract_inverted_index.toward | 405 |
| abstract_inverted_index.value, | 181, 184 |
| abstract_inverted_index.vector | 195 |
| abstract_inverted_index.years, | 71 |
| abstract_inverted_index.years. | 384 |
| abstract_inverted_index.(EOCRC) | 30 |
| abstract_inverted_index.-score. | 188 |
| abstract_inverted_index.Extreme | 200 |
| abstract_inverted_index.Methods | 87 |
| abstract_inverted_index.Results | 239 |
| abstract_inverted_index.Shapley | 222 |
| abstract_inverted_index.account | 152 |
| abstract_inverted_index.created | 119 |
| abstract_inverted_index.diverse | 281 |
| abstract_inverted_index.earlier | 406 |
| abstract_inverted_index.efforts | 404 |
| abstract_inverted_index.emerged | 352 |
| abstract_inverted_index.ensured | 145 |
| abstract_inverted_index.factors | 25, 81, 235, 389 |
| abstract_inverted_index.forest) | 205 |
| abstract_inverted_index.leading | 7 |
| abstract_inverted_index.machine | 54 |
| abstract_inverted_index.matched | 249, 257 |
| abstract_inverted_index.metrics | 170 |
| abstract_inverted_index.predict | 51 |
| abstract_inverted_index.status. | 347 |
| abstract_inverted_index.support | 84, 194 |
| abstract_inverted_index.through | 147 |
| abstract_inverted_index.various | 128 |
| abstract_inverted_index.windows | 136 |
| abstract_inverted_index.younger | 411 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Accurate | 15 |
| abstract_inverted_index.Additive | 223 |
| abstract_inverted_index.Boosting | 202 |
| abstract_inverted_index.Clinical | 103 |
| abstract_inverted_index.Gradient | 201 |
| abstract_inverted_index.Research | 104 |
| abstract_inverted_index.assessed | 132, 208 |
| abstract_inverted_index.balanced | 265 |
| abstract_inverted_index.compared | 270 |
| abstract_inverted_index.diseases | 351 |
| abstract_inverted_index.distinct | 108 |
| abstract_inverted_index.features | 332 |
| abstract_inverted_index.findings | 361 |
| abstract_inverted_index.identify | 230 |
| abstract_inverted_index.included | 243, 337 |
| abstract_inverted_index.insights | 399 |
| abstract_inverted_index.learning | 55 |
| abstract_inverted_index.logistic | 192 |
| abstract_inverted_index.machine) | 196 |
| abstract_inverted_index.matching | 150 |
| abstract_inverted_index.multiple | 133 |
| abstract_inverted_index.negative | 182 |
| abstract_inverted_index.patients | 40, 93 |
| abstract_inverted_index.positive | 179 |
| abstract_inverted_index.provides | 397 |
| abstract_inverted_index.results, | 291 |
| abstract_inverted_index.rigorous | 211 |
| abstract_inverted_index.separate | 120 |
| abstract_inverted_index.thorough | 20 |
| abstract_inverted_index.windows. | 329 |
| abstract_inverted_index.Objective | 46 |
| abstract_inverted_index.achieving | 391 |
| abstract_inverted_index.addition, | 218, 349 |
| abstract_inverted_index.conducted | 164 |
| abstract_inverted_index.controls, | 250 |
| abstract_inverted_index.controls. | 258 |
| abstract_inverted_index.detection | 407 |
| abstract_inverted_index.different | 214 |
| abstract_inverted_index.digestive | 340 |
| abstract_inverted_index.effective | 34 |
| abstract_inverted_index.exploring | 76 |
| abstract_inverted_index.important | 387 |
| abstract_inverted_index.including | 156, 171 |
| abstract_inverted_index.interpret | 226 |
| abstract_inverted_index.nonlinear | 198 |
| abstract_inverted_index.pathology | 109 |
| abstract_inverted_index.potential | 77, 364 |
| abstract_inverted_index.prominent | 354 |
| abstract_inverted_index.promising | 392 |
| abstract_inverted_index.screening | 44, 67 |
| abstract_inverted_index.secondary | 343 |
| abstract_inverted_index.variables | 155 |
| abstract_inverted_index.Americans. | 14 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Colorectal | 2 |
| abstract_inverted_index.associated | 236 |
| abstract_inverted_index.colorectal | 28 |
| abstract_inverted_index.comparison | 212 |
| abstract_inverted_index.diagnosis, | 312 |
| abstract_inverted_index.diagnosis. | 86 |
| abstract_inverted_index.disorders, | 342 |
| abstract_inverted_index.electronic | 59, 369 |
| abstract_inverted_index.ethnicity, | 159 |
| abstract_inverted_index.evaluation | 168 |
| abstract_inverted_index.facilitate | 374 |
| abstract_inverted_index.identified | 89 |
| abstract_inverted_index.indicators | 355 |
| abstract_inverted_index.leveraging | 368 |
| abstract_inverted_index.prediction | 17, 121, 134, 297, 377 |
| abstract_inverted_index.predictive | 180, 183, 287, 331, 393 |
| abstract_inverted_index.prevention | 35, 409 |
| abstract_inverted_index.propensity | 148 |
| abstract_inverted_index.protective | 80, 234 |
| abstract_inverted_index.reasonable | 290 |
| abstract_inverted_index.robustness | 146 |
| abstract_inverted_index.structured | 58 |
| abstract_inverted_index.treatment, | 37 |
| abstract_inverted_index.uncovering | 386 |
| abstract_inverted_index.Conclusions | 359 |
| abstract_inverted_index.Consortium. | 105 |
| abstract_inverted_index.OneFlorida+ | 102 |
| abstract_inverted_index.algorithms. | 130 |
| abstract_inverted_index.confounding | 154 |
| abstract_inverted_index.demonstrate | 362 |
| abstract_inverted_index.early-onset | 27 |
| abstract_inverted_index.individuals | 64, 381 |
| abstract_inverted_index.performance | 167 |
| abstract_inverted_index.prediction, | 316 |
| abstract_inverted_index.preliminary | 398 |
| abstract_inverted_index.recommended | 43 |
| abstract_inverted_index.regression, | 193 |
| abstract_inverted_index.strategies. | 216 |
| abstract_inverted_index.underweight | 346 |
| abstract_inverted_index.Explanations | 224 |
| abstract_inverted_index.demonstrated | 289 |
| abstract_inverted_index.distribution | 267 |
| abstract_inverted_index.particularly | 38 |
| abstract_inverted_index.performance, | 394 |
| abstract_inverted_index.populations. | 412 |
| abstract_inverted_index.sensitivity, | 177 |
| abstract_inverted_index.specifically | 356 |
| abstract_inverted_index.specificity, | 178 |
| abstract_inverted_index.comprehensive | 166 |
| abstract_inverted_index.malignancies, | 344 |
| abstract_inverted_index.respectively. | 313 |
| abstract_inverted_index.understanding | 21 |
| abstract_inverted_index.cancer-related | 10 |
| abstract_inverted_index.classification | 215 |
| abstract_inverted_index.male-to-female) | 269 |
| abstract_inverted_index.representation. | 285 |
| abstract_inverted_index.male-to-female), | 276 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 13 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.85363543 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |