Predicting Fatigue in Long Duration Mountain Events with a Single Sensor and Deep Learning Model Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/s21165442
Aim: To determine whether an AI model and single sensor measuring acceleration and ECG could model cognitive and physical fatigue for a self-paced trail run. Methods: A field-based protocol of continuous fatigue repeated hourly induced physical (~45 min) and cognitive (~10 min) fatigue on one healthy participant. The physical load was a 3.8 km, 200 m vertical gain, trail run, with acceleration and electrocardiogram (ECG) data collected using a single sensor. Cognitive load was a Multi Attribute Test Battery (MATB) and separate assessment battery included the Finger Tap Test (FTT), Stroop, Trail Making A and B, Spatial Memory, Paced Visual Serial Addition Test (PVSAT), and a vertical jump. A fatigue prediction model was implemented using a Convolutional Neural Network (CNN). Results: When the fatigue test battery results were compared for sensitivity to the protocol load, FTT right hand (R2 0.71) and Jump Height (R2 0.78) were the most sensitive while the other tests were less sensitive (R2 values Stroop 0.49, Trail Making A 0.29, Trail Making B 0.05, PVSAT 0.03, spatial memory 0.003). The best prediction results were achieved with a rolling average of 200 predictions (102.4 s), during set activity types, mean absolute error for ‘walk up’ (MAE200 12.5%), and range of absolute error for ‘run down’ (RAE200 16.7%). Conclusions: We were able to measure cognitive and physical fatigue using a single wearable sensor during a practical field protocol, including contextual factors in conjunction with a neural network model. This research has practical application to fatigue research in the field.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s21165442
- https://www.mdpi.com/1424-8220/21/16/5442/pdf?version=1628822637
- OA Status
- gold
- Cited By
- 15
- References
- 76
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3193201575
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3193201575Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s21165442Digital Object Identifier
- Title
-
Predicting Fatigue in Long Duration Mountain Events with a Single Sensor and Deep Learning ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-12Full publication date if available
- Authors
-
Brian Russell, Andrew McDaid, William B. Toscano, Patria HumeList of authors in order
- Landing page
-
https://doi.org/10.3390/s21165442Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/21/16/5442/pdf?version=1628822637Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/21/16/5442/pdf?version=1628822637Direct OA link when available
- Concepts
-
Stroop effect, Battery (electricity), Simulation, Standard deviation, Cognition, Computer science, Acceleration, Psychology, Statistics, Mathematics, Classical mechanics, Physics, Quantum mechanics, Power (physics), NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 1, 2023: 8, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
76Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3193201575 |
|---|---|
| doi | https://doi.org/10.3390/s21165442 |
| ids.doi | https://doi.org/10.3390/s21165442 |
| ids.mag | 3193201575 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34450884 |
| ids.openalex | https://openalex.org/W3193201575 |
| fwci | 2.23566744 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000077321 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Deep Learning |
| mesh[1].qualifier_ui | Q000175 |
| mesh[1].descriptor_ui | D005221 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | diagnosis |
| mesh[1].descriptor_name | Fatigue |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D006801 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Humans |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016571 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Neural Networks, Computer |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D016138 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Walking |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000077321 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Deep Learning |
| mesh[6].qualifier_ui | Q000175 |
| mesh[6].descriptor_ui | D005221 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | diagnosis |
| mesh[6].descriptor_name | Fatigue |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D016571 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Neural Networks, Computer |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D016138 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Walking |
| type | article |
| title | Predicting Fatigue in Long Duration Mountain Events with a Single Sensor and Deep Learning Model |
| biblio.issue | 16 |
| biblio.volume | 21 |
| biblio.last_page | 5442 |
| biblio.first_page | 5442 |
| topics[0].id | https://openalex.org/T11373 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9922000169754028 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Sleep and Work-Related Fatigue |
| topics[1].id | https://openalex.org/T12138 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9876999855041504 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3609 |
| topics[1].subfield.display_name | Occupational Therapy |
| topics[1].display_name | Occupational Health and Performance |
| topics[2].id | https://openalex.org/T10745 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.930899977684021 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | Heart Rate Variability and Autonomic Control |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C162967406 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8139718174934387 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q384176 |
| concepts[0].display_name | Stroop effect |
| concepts[1].id | https://openalex.org/C555008776 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5706009864807129 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q267298 |
| concepts[1].display_name | Battery (electricity) |
| concepts[2].id | https://openalex.org/C44154836 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4731748402118683 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[2].display_name | Simulation |
| concepts[3].id | https://openalex.org/C22679943 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4464242458343506 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q159375 |
| concepts[3].display_name | Standard deviation |
| concepts[4].id | https://openalex.org/C169900460 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4322464168071747 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[4].display_name | Cognition |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.41482779383659363 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C117896860 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4134776294231415 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11376 |
| concepts[6].display_name | Acceleration |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.29290372133255005 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2107899785041809 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.17284777760505676 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C74650414 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11397 |
| concepts[10].display_name | Classical mechanics |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| concepts[13].id | https://openalex.org/C163258240 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[13].display_name | Power (physics) |
| concepts[14].id | https://openalex.org/C169760540 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[14].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/stroop-effect |
| keywords[0].score | 0.8139718174934387 |
| keywords[0].display_name | Stroop effect |
| keywords[1].id | https://openalex.org/keywords/battery |
| keywords[1].score | 0.5706009864807129 |
| keywords[1].display_name | Battery (electricity) |
| keywords[2].id | https://openalex.org/keywords/simulation |
| keywords[2].score | 0.4731748402118683 |
| keywords[2].display_name | Simulation |
| keywords[3].id | https://openalex.org/keywords/standard-deviation |
| keywords[3].score | 0.4464242458343506 |
| keywords[3].display_name | Standard deviation |
| keywords[4].id | https://openalex.org/keywords/cognition |
| keywords[4].score | 0.4322464168071747 |
| keywords[4].display_name | Cognition |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.41482779383659363 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/acceleration |
| keywords[6].score | 0.4134776294231415 |
| keywords[6].display_name | Acceleration |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.29290372133255005 |
| keywords[7].display_name | Psychology |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.2107899785041809 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.17284777760505676 |
| keywords[9].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/s21165442 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/21/16/5442/pdf?version=1628822637 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s21165442 |
| locations[1].id | pmid:34450884 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34450884 |
| locations[2].id | pmh:oai:openrepository.aut.ac.nz:10292/14466 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401809 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Tuwhera (Auckland University of Technology) |
| locations[2].source.host_organization | https://openalex.org/I39854758 |
| locations[2].source.host_organization_name | Auckland University of Technology |
| locations[2].source.host_organization_lineage | https://openalex.org/I39854758 |
| locations[2].license | other-oa |
| locations[2].pdf_url | http://hdl.handle.net/10292/14466 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Journal Article |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://hdl.handle.net/10292/14466 |
| locations[3].id | pmh:oai:doaj.org/article:f6a310b530f24df28ec6ff4c8c91cd3c |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | cc-by-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors, Vol 21, Iss 16, p 5442 (2021) |
| locations[3].landing_page_url | https://doaj.org/article/f6a310b530f24df28ec6ff4c8c91cd3c |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/21/16/5442/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors; Volume 21; Issue 16; Pages: 5442 |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/s21165442 |
| locations[5].id | pmh:oai:pubmedcentral.nih.gov:8399921 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S2764455111 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | PubMed Central |
| locations[5].source.host_organization | https://openalex.org/I1299303238 |
| locations[5].source.host_organization_name | National Institutes of Health |
| locations[5].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[5].license | other-oa |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Text |
| locations[5].license_id | https://openalex.org/licenses/other-oa |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | Sensors (Basel) |
| locations[5].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8399921 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5046028967 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9960-1492 |
| authorships[0].author.display_name | Brian Russell |
| authorships[0].countries | NZ, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1280536761, https://openalex.org/I4210124779 |
| authorships[0].affiliations[0].raw_affiliation_string | National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA 94043, USA |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I39854758 |
| authorships[0].affiliations[1].raw_affiliation_string | Sports Performance Research Institute, Auckland University of Technology, Auckland 0632, New Zealand |
| authorships[0].institutions[0].id | https://openalex.org/I39854758 |
| authorships[0].institutions[0].ror | https://ror.org/01zvqw119 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I39854758 |
| authorships[0].institutions[0].country_code | NZ |
| authorships[0].institutions[0].display_name | Auckland University of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I1280536761 |
| authorships[0].institutions[1].ror | https://ror.org/02acart68 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I1280536761, https://openalex.org/I4210124779 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Ames Research Center |
| authorships[0].institutions[2].id | https://openalex.org/I4210124779 |
| authorships[0].institutions[2].ror | https://ror.org/027ka1x80 |
| authorships[0].institutions[2].type | government |
| authorships[0].institutions[2].lineage | https://openalex.org/I4210124779 |
| authorships[0].institutions[2].country_code | US |
| authorships[0].institutions[2].display_name | National Aeronautics and Space Administration |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Brian Russell |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA 94043, USA, Sports Performance Research Institute, Auckland University of Technology, Auckland 0632, New Zealand |
| authorships[1].author.id | https://openalex.org/A5015126214 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3316-7344 |
| authorships[1].author.display_name | Andrew McDaid |
| authorships[1].countries | NZ |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I154130895 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, University of Auckland, Auckland 1142, New Zealand |
| authorships[1].institutions[0].id | https://openalex.org/I154130895 |
| authorships[1].institutions[0].ror | https://ror.org/03b94tp07 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I154130895 |
| authorships[1].institutions[0].country_code | NZ |
| authorships[1].institutions[0].display_name | University of Auckland |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Andrew McDaid |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mechanical Engineering, University of Auckland, Auckland 1142, New Zealand |
| authorships[2].author.id | https://openalex.org/A5062692523 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | William B. Toscano |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1280536761, https://openalex.org/I4210124779 |
| authorships[2].affiliations[0].raw_affiliation_string | National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA 94043, USA |
| authorships[2].institutions[0].id | https://openalex.org/I1280536761 |
| authorships[2].institutions[0].ror | https://ror.org/02acart68 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1280536761, https://openalex.org/I4210124779 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Ames Research Center |
| authorships[2].institutions[1].id | https://openalex.org/I4210124779 |
| authorships[2].institutions[1].ror | https://ror.org/027ka1x80 |
| authorships[2].institutions[1].type | government |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210124779 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | National Aeronautics and Space Administration |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | William Toscano |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA 94043, USA |
| authorships[3].author.id | https://openalex.org/A5051099041 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1847-8128 |
| authorships[3].author.display_name | Patria Hume |
| authorships[3].countries | NZ |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I39854758 |
| authorships[3].affiliations[0].raw_affiliation_string | Sports Performance Research Institute, Auckland University of Technology, Auckland 0632, New Zealand |
| authorships[3].institutions[0].id | https://openalex.org/I39854758 |
| authorships[3].institutions[0].ror | https://ror.org/01zvqw119 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I39854758 |
| authorships[3].institutions[0].country_code | NZ |
| authorships[3].institutions[0].display_name | Auckland University of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Patria Hume |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Sports Performance Research Institute, Auckland University of Technology, Auckland 0632, New Zealand |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/21/16/5442/pdf?version=1628822637 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting Fatigue in Long Duration Mountain Events with a Single Sensor and Deep Learning Model |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11373 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9922000169754028 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Sleep and Work-Related Fatigue |
| related_works | https://openalex.org/W1970555053, https://openalex.org/W4241390462, https://openalex.org/W2053629062, https://openalex.org/W2057396539, https://openalex.org/W3205260276, https://openalex.org/W2091287875, https://openalex.org/W2412548067, https://openalex.org/W2368315872, https://openalex.org/W2061347168, https://openalex.org/W1502020353 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 6 |
| best_oa_location.id | doi:10.3390/s21165442 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/21/16/5442/pdf?version=1628822637 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s21165442 |
| primary_location.id | doi:10.3390/s21165442 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/21/16/5442/pdf?version=1628822637 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s21165442 |
| publication_date | 2021-08-12 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W1990397207, https://openalex.org/W2068971809, https://openalex.org/W2263292686, https://openalex.org/W2130038676, https://openalex.org/W1971102168, https://openalex.org/W1965233495, https://openalex.org/W2099018690, https://openalex.org/W227339781, https://openalex.org/W1976164826, https://openalex.org/W2066224754, https://openalex.org/W2299123965, https://openalex.org/W1636736913, https://openalex.org/W6605172867, https://openalex.org/W2099000799, https://openalex.org/W1964442530, https://openalex.org/W2098574065, https://openalex.org/W2152149748, https://openalex.org/W2563742216, https://openalex.org/W6775634415, https://openalex.org/W2070561881, https://openalex.org/W2889749689, https://openalex.org/W2141309263, https://openalex.org/W2269757556, https://openalex.org/W2060493907, https://openalex.org/W2524128351, https://openalex.org/W2106500239, https://openalex.org/W1258896241, https://openalex.org/W2089576302, https://openalex.org/W2100713358, https://openalex.org/W2766757006, https://openalex.org/W2801637447, https://openalex.org/W127036837, https://openalex.org/W2019304502, https://openalex.org/W6698830630, https://openalex.org/W2759941278, https://openalex.org/W3017424189, https://openalex.org/W2970993639, https://openalex.org/W2103230889, https://openalex.org/W2426191834, https://openalex.org/W2269219430, https://openalex.org/W2147558499, https://openalex.org/W2007592824, https://openalex.org/W2023133322, https://openalex.org/W3125481752, https://openalex.org/W2809202603, https://openalex.org/W2775066402, https://openalex.org/W2759690896, https://openalex.org/W4292333043, https://openalex.org/W1973996240, https://openalex.org/W2590598362, https://openalex.org/W2146560679, https://openalex.org/W2066845054, https://openalex.org/W1972623633, https://openalex.org/W6610112131, https://openalex.org/W2058930877, https://openalex.org/W2504038606, https://openalex.org/W1906176973, https://openalex.org/W2147320300, https://openalex.org/W1987548949, https://openalex.org/W2795638985, https://openalex.org/W2514915110, https://openalex.org/W2133111582, https://openalex.org/W2755870575, https://openalex.org/W1141964794, https://openalex.org/W6843851247, https://openalex.org/W6980214244, https://openalex.org/W2053082706, https://openalex.org/W2312572125, https://openalex.org/W9098151, https://openalex.org/W283216362, https://openalex.org/W2903689008, https://openalex.org/W2782916306, https://openalex.org/W4298210851, https://openalex.org/W2133768260, https://openalex.org/W3014765453, https://openalex.org/W4256492882 |
| referenced_works_count | 76 |
| abstract_inverted_index.A | 26, 93, 108, 162 |
| abstract_inverted_index.B | 166 |
| abstract_inverted_index.a | 21, 51, 68, 74, 105, 115, 180, 221, 226, 236 |
| abstract_inverted_index.m | 55 |
| abstract_inverted_index.AI | 5 |
| abstract_inverted_index.B, | 95 |
| abstract_inverted_index.To | 1 |
| abstract_inverted_index.We | 211 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.in | 233, 248 |
| abstract_inverted_index.of | 29, 183, 202 |
| abstract_inverted_index.on | 43 |
| abstract_inverted_index.to | 131, 214, 245 |
| abstract_inverted_index.(R2 | 138, 143, 156 |
| abstract_inverted_index.200 | 54, 184 |
| abstract_inverted_index.3.8 | 52 |
| abstract_inverted_index.ECG | 13 |
| abstract_inverted_index.FTT | 135 |
| abstract_inverted_index.Tap | 87 |
| abstract_inverted_index.The | 47, 173 |
| abstract_inverted_index.and | 7, 12, 17, 38, 62, 80, 94, 104, 140, 200, 217 |
| abstract_inverted_index.for | 20, 129, 195, 205 |
| abstract_inverted_index.has | 242 |
| abstract_inverted_index.km, | 53 |
| abstract_inverted_index.one | 44 |
| abstract_inverted_index.s), | 187 |
| abstract_inverted_index.set | 189 |
| abstract_inverted_index.the | 85, 122, 132, 146, 150, 249 |
| abstract_inverted_index.was | 50, 73, 112 |
| abstract_inverted_index.(~10 | 40 |
| abstract_inverted_index.(~45 | 36 |
| abstract_inverted_index.Aim: | 0 |
| abstract_inverted_index.Jump | 141 |
| abstract_inverted_index.Test | 77, 88, 102 |
| abstract_inverted_index.This | 240 |
| abstract_inverted_index.When | 121 |
| abstract_inverted_index.able | 213 |
| abstract_inverted_index.best | 174 |
| abstract_inverted_index.data | 65 |
| abstract_inverted_index.hand | 137 |
| abstract_inverted_index.less | 154 |
| abstract_inverted_index.load | 49, 72 |
| abstract_inverted_index.mean | 192 |
| abstract_inverted_index.min) | 37, 41 |
| abstract_inverted_index.most | 147 |
| abstract_inverted_index.run, | 59 |
| abstract_inverted_index.run. | 24 |
| abstract_inverted_index.test | 124 |
| abstract_inverted_index.were | 127, 145, 153, 177, 212 |
| abstract_inverted_index.with | 60, 179, 235 |
| abstract_inverted_index.(ECG) | 64 |
| abstract_inverted_index.0.03, | 169 |
| abstract_inverted_index.0.05, | 167 |
| abstract_inverted_index.0.29, | 163 |
| abstract_inverted_index.0.49, | 159 |
| abstract_inverted_index.0.71) | 139 |
| abstract_inverted_index.0.78) | 144 |
| abstract_inverted_index.Multi | 75 |
| abstract_inverted_index.PVSAT | 168 |
| abstract_inverted_index.Paced | 98 |
| abstract_inverted_index.Trail | 91, 160, 164 |
| abstract_inverted_index.could | 14 |
| abstract_inverted_index.error | 194, 204 |
| abstract_inverted_index.field | 228 |
| abstract_inverted_index.gain, | 57 |
| abstract_inverted_index.jump. | 107 |
| abstract_inverted_index.load, | 134 |
| abstract_inverted_index.model | 6, 15, 111 |
| abstract_inverted_index.other | 151 |
| abstract_inverted_index.range | 201 |
| abstract_inverted_index.right | 136 |
| abstract_inverted_index.tests | 152 |
| abstract_inverted_index.trail | 23, 58 |
| abstract_inverted_index.up’ | 197 |
| abstract_inverted_index.using | 67, 114, 220 |
| abstract_inverted_index.while | 149 |
| abstract_inverted_index.(102.4 | 186 |
| abstract_inverted_index.(CNN). | 119 |
| abstract_inverted_index.(FTT), | 89 |
| abstract_inverted_index.(MATB) | 79 |
| abstract_inverted_index.Finger | 86 |
| abstract_inverted_index.Height | 142 |
| abstract_inverted_index.Making | 92, 161, 165 |
| abstract_inverted_index.Neural | 117 |
| abstract_inverted_index.Serial | 100 |
| abstract_inverted_index.Stroop | 158 |
| abstract_inverted_index.Visual | 99 |
| abstract_inverted_index.during | 188, 225 |
| abstract_inverted_index.field. | 250 |
| abstract_inverted_index.hourly | 33 |
| abstract_inverted_index.memory | 171 |
| abstract_inverted_index.model. | 239 |
| abstract_inverted_index.neural | 237 |
| abstract_inverted_index.sensor | 9, 224 |
| abstract_inverted_index.single | 8, 69, 222 |
| abstract_inverted_index.types, | 191 |
| abstract_inverted_index.values | 157 |
| abstract_inverted_index.‘run | 206 |
| abstract_inverted_index.(MAE200 | 198 |
| abstract_inverted_index.(RAE200 | 208 |
| abstract_inverted_index.0.003). | 172 |
| abstract_inverted_index.12.5%), | 199 |
| abstract_inverted_index.16.7%). | 209 |
| abstract_inverted_index.Battery | 78 |
| abstract_inverted_index.Memory, | 97 |
| abstract_inverted_index.Network | 118 |
| abstract_inverted_index.Spatial | 96 |
| abstract_inverted_index.Stroop, | 90 |
| abstract_inverted_index.average | 182 |
| abstract_inverted_index.battery | 83, 125 |
| abstract_inverted_index.down’ | 207 |
| abstract_inverted_index.factors | 232 |
| abstract_inverted_index.fatigue | 19, 31, 42, 109, 123, 219, 246 |
| abstract_inverted_index.healthy | 45 |
| abstract_inverted_index.induced | 34 |
| abstract_inverted_index.measure | 215 |
| abstract_inverted_index.network | 238 |
| abstract_inverted_index.results | 126, 176 |
| abstract_inverted_index.rolling | 181 |
| abstract_inverted_index.sensor. | 70 |
| abstract_inverted_index.spatial | 170 |
| abstract_inverted_index.whether | 3 |
| abstract_inverted_index.‘walk | 196 |
| abstract_inverted_index.(PVSAT), | 103 |
| abstract_inverted_index.Addition | 101 |
| abstract_inverted_index.Methods: | 25 |
| abstract_inverted_index.Results: | 120 |
| abstract_inverted_index.absolute | 193, 203 |
| abstract_inverted_index.achieved | 178 |
| abstract_inverted_index.activity | 190 |
| abstract_inverted_index.compared | 128 |
| abstract_inverted_index.included | 84 |
| abstract_inverted_index.physical | 18, 35, 48, 218 |
| abstract_inverted_index.protocol | 28, 133 |
| abstract_inverted_index.repeated | 32 |
| abstract_inverted_index.research | 241, 247 |
| abstract_inverted_index.separate | 81 |
| abstract_inverted_index.vertical | 56, 106 |
| abstract_inverted_index.wearable | 223 |
| abstract_inverted_index.Attribute | 76 |
| abstract_inverted_index.Cognitive | 71 |
| abstract_inverted_index.cognitive | 16, 39, 216 |
| abstract_inverted_index.collected | 66 |
| abstract_inverted_index.determine | 2 |
| abstract_inverted_index.including | 230 |
| abstract_inverted_index.measuring | 10 |
| abstract_inverted_index.practical | 227, 243 |
| abstract_inverted_index.protocol, | 229 |
| abstract_inverted_index.sensitive | 148, 155 |
| abstract_inverted_index.assessment | 82 |
| abstract_inverted_index.contextual | 231 |
| abstract_inverted_index.continuous | 30 |
| abstract_inverted_index.prediction | 110, 175 |
| abstract_inverted_index.self-paced | 22 |
| abstract_inverted_index.application | 244 |
| abstract_inverted_index.conjunction | 234 |
| abstract_inverted_index.field-based | 27 |
| abstract_inverted_index.implemented | 113 |
| abstract_inverted_index.predictions | 185 |
| abstract_inverted_index.sensitivity | 130 |
| abstract_inverted_index.Conclusions: | 210 |
| abstract_inverted_index.acceleration | 11, 61 |
| abstract_inverted_index.participant. | 46 |
| abstract_inverted_index.Convolutional | 116 |
| abstract_inverted_index.electrocardiogram | 63 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5046028967 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I1280536761, https://openalex.org/I39854758, https://openalex.org/I4210124779 |
| citation_normalized_percentile.value | 0.85844657 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |