Predicting House Prices with a Linear Regression Model Article Swipe
House price forecasting is an important area of economic and social research. Among the many house price forecasting methods, the linear regression model is widely used because of its simplicity, easy interpretation, and high computational efficiency. This paper aims to investigate the effectiveness of linear regression models in house price forecasting. This paper will first introduce the basic theory of linear regression model, and discuss the factors that affect the housing price, then build and evaluate the housing price prediction model, and then verify the constructed data model through real data. Finally, we discuss the accuracy of the prediction, analyze the results of the passing model, and find that housing prices can be predicted more accurately for cases where the variables are relatively simple and differentiated, such as the ownership of specific facilities. However, linear regression prediction still has some defects, and there are more effective and general methods for housing price prediction to solve the problems that linear regression method cannot pay attention to, which will be the subject of future research.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.54254/2755-2721/2024.18220
- https://www.ewadirect.com/proceedings/ace/article/view/18220/pdf
- OA Status
- hybrid
- Cited By
- 1
- References
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405333369
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405333369Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.54254/2755-2721/2024.18220Digital Object Identifier
- Title
-
Predicting House Prices with a Linear Regression ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-12Full publication date if available
- Authors
-
Lei YanList of authors in order
- Landing page
-
https://doi.org/10.54254/2755-2721/2024.18220Publisher landing page
- PDF URL
-
https://www.ewadirect.com/proceedings/ace/article/view/18220/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.ewadirect.com/proceedings/ace/article/view/18220/pdfDirect OA link when available
- Concepts
-
Proper linear model, Linear regression, Econometrics, Regression analysis, Computer science, Linear model, Regression, Simple linear regression, House price, Simplicity, Polynomial regression, Economics, Statistics, Machine learning, Mathematics, Epistemology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405333369 |
|---|---|
| doi | https://doi.org/10.54254/2755-2721/2024.18220 |
| ids.doi | https://doi.org/10.54254/2755-2721/2024.18220 |
| ids.openalex | https://openalex.org/W4405333369 |
| fwci | 0.36916847 |
| type | article |
| title | Predicting House Prices with a Linear Regression Model |
| biblio.issue | 1 |
| biblio.volume | 114 |
| biblio.last_page | 115 |
| biblio.first_page | 107 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.3619000017642975 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C32224588 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7413927316665649 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7250175 |
| concepts[0].display_name | Proper linear model |
| concepts[1].id | https://openalex.org/C48921125 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7131673097610474 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[1].display_name | Linear regression |
| concepts[2].id | https://openalex.org/C149782125 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6618961691856384 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[2].display_name | Econometrics |
| concepts[3].id | https://openalex.org/C152877465 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6047158241271973 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[3].display_name | Regression analysis |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5835496187210083 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C163175372 |
| concepts[5].level | 2 |
| concepts[5].score | 0.570624589920044 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3339222 |
| concepts[5].display_name | Linear model |
| concepts[6].id | https://openalex.org/C83546350 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5531922578811646 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[6].display_name | Regression |
| concepts[7].id | https://openalex.org/C149769383 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5295974612236023 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7520804 |
| concepts[7].display_name | Simple linear regression |
| concepts[8].id | https://openalex.org/C2992949716 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5118545889854431 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q512599 |
| concepts[8].display_name | House price |
| concepts[9].id | https://openalex.org/C2776372474 |
| concepts[9].level | 2 |
| concepts[9].score | 0.47133588790893555 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q508291 |
| concepts[9].display_name | Simplicity |
| concepts[10].id | https://openalex.org/C120068334 |
| concepts[10].level | 3 |
| concepts[10].score | 0.29386934638023376 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q45343 |
| concepts[10].display_name | Polynomial regression |
| concepts[11].id | https://openalex.org/C162324750 |
| concepts[11].level | 0 |
| concepts[11].score | 0.29280734062194824 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[11].display_name | Economics |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.22358563542366028 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.22214779257774353 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.16672834753990173 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C111472728 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[15].display_name | Epistemology |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/proper-linear-model |
| keywords[0].score | 0.7413927316665649 |
| keywords[0].display_name | Proper linear model |
| keywords[1].id | https://openalex.org/keywords/linear-regression |
| keywords[1].score | 0.7131673097610474 |
| keywords[1].display_name | Linear regression |
| keywords[2].id | https://openalex.org/keywords/econometrics |
| keywords[2].score | 0.6618961691856384 |
| keywords[2].display_name | Econometrics |
| keywords[3].id | https://openalex.org/keywords/regression-analysis |
| keywords[3].score | 0.6047158241271973 |
| keywords[3].display_name | Regression analysis |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5835496187210083 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/linear-model |
| keywords[5].score | 0.570624589920044 |
| keywords[5].display_name | Linear model |
| keywords[6].id | https://openalex.org/keywords/regression |
| keywords[6].score | 0.5531922578811646 |
| keywords[6].display_name | Regression |
| keywords[7].id | https://openalex.org/keywords/simple-linear-regression |
| keywords[7].score | 0.5295974612236023 |
| keywords[7].display_name | Simple linear regression |
| keywords[8].id | https://openalex.org/keywords/house-price |
| keywords[8].score | 0.5118545889854431 |
| keywords[8].display_name | House price |
| keywords[9].id | https://openalex.org/keywords/simplicity |
| keywords[9].score | 0.47133588790893555 |
| keywords[9].display_name | Simplicity |
| keywords[10].id | https://openalex.org/keywords/polynomial-regression |
| keywords[10].score | 0.29386934638023376 |
| keywords[10].display_name | Polynomial regression |
| keywords[11].id | https://openalex.org/keywords/economics |
| keywords[11].score | 0.29280734062194824 |
| keywords[11].display_name | Economics |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.22358563542366028 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.22214779257774353 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.16672834753990173 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.54254/2755-2721/2024.18220 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387281889 |
| locations[0].source.issn | 2755-2721, 2755-273X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2755-2721 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Applied and Computational Engineering |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.ewadirect.com/proceedings/ace/article/view/18220/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied and Computational Engineering |
| locations[0].landing_page_url | https://doi.org/10.54254/2755-2721/2024.18220 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5045473603 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0965-4636 |
| authorships[0].author.display_name | Lei Yan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I13591777 |
| authorships[0].affiliations[0].raw_affiliation_string | Mathematics and Applied Mathematics, University of Nottingham Ningbo China |
| authorships[0].institutions[0].id | https://openalex.org/I13591777 |
| authorships[0].institutions[0].ror | https://ror.org/03y4dt428 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I13591777, https://openalex.org/I142263535 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Nottingham Ningbo China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liming Yan |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Mathematics and Applied Mathematics, University of Nottingham Ningbo China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ewadirect.com/proceedings/ace/article/view/18220/pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting House Prices with a Linear Regression Model |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.3619000017642975 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W4226071118, https://openalex.org/W3106586668, https://openalex.org/W4230983264, https://openalex.org/W600390644, https://openalex.org/W4224231346, https://openalex.org/W3093365844, https://openalex.org/W652265168, https://openalex.org/W2289575421, https://openalex.org/W4200124026, https://openalex.org/W1550978005 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.54254/2755-2721/2024.18220 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387281889 |
| best_oa_location.source.issn | 2755-2721, 2755-273X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2755-2721 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Applied and Computational Engineering |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.ewadirect.com/proceedings/ace/article/view/18220/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied and Computational Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.54254/2755-2721/2024.18220 |
| primary_location.id | doi:10.54254/2755-2721/2024.18220 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387281889 |
| primary_location.source.issn | 2755-2721, 2755-273X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2755-2721 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Applied and Computational Engineering |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.ewadirect.com/proceedings/ace/article/view/18220/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied and Computational Engineering |
| primary_location.landing_page_url | https://doi.org/10.54254/2755-2721/2024.18220 |
| publication_date | 2024-12-12 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4384157309, https://openalex.org/W4298140903, https://openalex.org/W4386257789, https://openalex.org/W3202059926, https://openalex.org/W3045242078, https://openalex.org/W3200404759, https://openalex.org/W4390775059, https://openalex.org/W2125014235 |
| referenced_works_count | 8 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.as | 127 |
| abstract_inverted_index.be | 112, 167 |
| abstract_inverted_index.in | 47 |
| abstract_inverted_index.is | 3, 23 |
| abstract_inverted_index.of | 7, 27, 43, 59, 96, 102, 130, 170 |
| abstract_inverted_index.to | 39, 153 |
| abstract_inverted_index.we | 92 |
| abstract_inverted_index.and | 9, 32, 63, 74, 81, 106, 124, 141, 146 |
| abstract_inverted_index.are | 121, 143 |
| abstract_inverted_index.can | 111 |
| abstract_inverted_index.for | 116, 149 |
| abstract_inverted_index.has | 138 |
| abstract_inverted_index.its | 28 |
| abstract_inverted_index.pay | 162 |
| abstract_inverted_index.the | 13, 19, 41, 56, 65, 69, 76, 84, 94, 97, 100, 103, 119, 128, 155, 168 |
| abstract_inverted_index.to, | 164 |
| abstract_inverted_index.This | 36, 51 |
| abstract_inverted_index.aims | 38 |
| abstract_inverted_index.area | 6 |
| abstract_inverted_index.data | 86 |
| abstract_inverted_index.easy | 30 |
| abstract_inverted_index.find | 107 |
| abstract_inverted_index.high | 33 |
| abstract_inverted_index.many | 14 |
| abstract_inverted_index.more | 114, 144 |
| abstract_inverted_index.real | 89 |
| abstract_inverted_index.some | 139 |
| abstract_inverted_index.such | 126 |
| abstract_inverted_index.that | 67, 108, 157 |
| abstract_inverted_index.then | 72, 82 |
| abstract_inverted_index.used | 25 |
| abstract_inverted_index.will | 53, 166 |
| abstract_inverted_index.Among | 12 |
| abstract_inverted_index.House | 0 |
| abstract_inverted_index.basic | 57 |
| abstract_inverted_index.build | 73 |
| abstract_inverted_index.cases | 117 |
| abstract_inverted_index.data. | 90 |
| abstract_inverted_index.first | 54 |
| abstract_inverted_index.house | 15, 48 |
| abstract_inverted_index.model | 22, 87 |
| abstract_inverted_index.paper | 37, 52 |
| abstract_inverted_index.price | 1, 16, 49, 78, 151 |
| abstract_inverted_index.solve | 154 |
| abstract_inverted_index.still | 137 |
| abstract_inverted_index.there | 142 |
| abstract_inverted_index.where | 118 |
| abstract_inverted_index.which | 165 |
| abstract_inverted_index.affect | 68 |
| abstract_inverted_index.cannot | 161 |
| abstract_inverted_index.future | 171 |
| abstract_inverted_index.linear | 20, 44, 60, 134, 158 |
| abstract_inverted_index.method | 160 |
| abstract_inverted_index.model, | 62, 80, 105 |
| abstract_inverted_index.models | 46 |
| abstract_inverted_index.price, | 71 |
| abstract_inverted_index.prices | 110 |
| abstract_inverted_index.simple | 123 |
| abstract_inverted_index.social | 10 |
| abstract_inverted_index.theory | 58 |
| abstract_inverted_index.verify | 83 |
| abstract_inverted_index.widely | 24 |
| abstract_inverted_index.analyze | 99 |
| abstract_inverted_index.because | 26 |
| abstract_inverted_index.discuss | 64, 93 |
| abstract_inverted_index.factors | 66 |
| abstract_inverted_index.general | 147 |
| abstract_inverted_index.housing | 70, 77, 109, 150 |
| abstract_inverted_index.methods | 148 |
| abstract_inverted_index.passing | 104 |
| abstract_inverted_index.results | 101 |
| abstract_inverted_index.subject | 169 |
| abstract_inverted_index.through | 88 |
| abstract_inverted_index.Finally, | 91 |
| abstract_inverted_index.However, | 133 |
| abstract_inverted_index.accuracy | 95 |
| abstract_inverted_index.defects, | 140 |
| abstract_inverted_index.economic | 8 |
| abstract_inverted_index.evaluate | 75 |
| abstract_inverted_index.methods, | 18 |
| abstract_inverted_index.problems | 156 |
| abstract_inverted_index.specific | 131 |
| abstract_inverted_index.attention | 163 |
| abstract_inverted_index.effective | 145 |
| abstract_inverted_index.important | 5 |
| abstract_inverted_index.introduce | 55 |
| abstract_inverted_index.ownership | 129 |
| abstract_inverted_index.predicted | 113 |
| abstract_inverted_index.research. | 11, 172 |
| abstract_inverted_index.variables | 120 |
| abstract_inverted_index.accurately | 115 |
| abstract_inverted_index.prediction | 79, 136, 152 |
| abstract_inverted_index.regression | 21, 45, 61, 135, 159 |
| abstract_inverted_index.relatively | 122 |
| abstract_inverted_index.constructed | 85 |
| abstract_inverted_index.efficiency. | 35 |
| abstract_inverted_index.facilities. | 132 |
| abstract_inverted_index.forecasting | 2, 17 |
| abstract_inverted_index.investigate | 40 |
| abstract_inverted_index.prediction, | 98 |
| abstract_inverted_index.simplicity, | 29 |
| abstract_inverted_index.forecasting. | 50 |
| abstract_inverted_index.computational | 34 |
| abstract_inverted_index.effectiveness | 42 |
| abstract_inverted_index.differentiated, | 125 |
| abstract_inverted_index.interpretation, | 31 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5045473603 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I13591777 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.62036398 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |