Predicting Long-Term Scientific Impact Based on Multi-Field Feature Extraction Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/access.2019.2910239
Nowadays, there have been many studies on evaluating the scientific impact of scholars. However, we still lack effective methods to predict long-term impact, especially 10 years in the future. Therefore, we propose a long-term scientific impact prediction model based on multi-field feature extraction. The workflow of our proposed model consists of feature engineering and model ensemble. In feature engineering, we extract attribute feature, time-series feature, and heterogeneous network feature based on three different fields. Moreover, when extracting heterogeneous network feature, we propose a scientific impact evaluation method based on heterogeneous academic network, which considers both the time of publication and author order factors. In the model ensemble, we adjust the basic model and noise model to the different training set to make full use of the information from the original dataset. The experiment results demonstrate that the proposed model can stably improve the accuracy of scholars' scientific impact prediction, and it also offers a prediction pattern for long-term prediction problem.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2019.2910239
- https://ieeexplore.ieee.org/ielx7/6287639/8600701/08685097.pdf
- OA Status
- gold
- Cited By
- 14
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2941365238
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2941365238Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2019.2910239Digital Object Identifier
- Title
-
Predicting Long-Term Scientific Impact Based on Multi-Field Feature ExtractionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Ziming Wu, Weiwei Lin, Pan Liu, Jingbang Chen, Li MaoList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2019.2910239Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08685097.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08685097.pdfDirect OA link when available
- Concepts
-
Computer science, Feature engineering, Feature (linguistics), Field (mathematics), Term (time), Feature extraction, Workflow, Data mining, Machine learning, Artificial intelligence, Predictive modelling, Deep learning, Database, Mathematics, Physics, Pure mathematics, Linguistics, Quantum mechanics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3, 2022: 3, 2021: 3, 2020: 4, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2941365238 |
|---|---|
| doi | https://doi.org/10.1109/access.2019.2910239 |
| ids.doi | https://doi.org/10.1109/access.2019.2910239 |
| ids.mag | 2941365238 |
| ids.openalex | https://openalex.org/W2941365238 |
| fwci | 2.03044534 |
| type | article |
| title | Predicting Long-Term Scientific Impact Based on Multi-Field Feature Extraction |
| awards[0].id | https://openalex.org/G8747819390 |
| awards[0].funder_id | https://openalex.org/F4320335795 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2016A010101018 |
| awards[0].funder_display_name | Science and Technology Planning Project of Guangdong Province |
| awards[1].id | https://openalex.org/G8286750424 |
| awards[1].funder_id | https://openalex.org/F4320335795 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2017B010126002 |
| awards[1].funder_display_name | Science and Technology Planning Project of Guangdong Province |
| awards[2].id | https://openalex.org/G5177161963 |
| awards[2].funder_id | https://openalex.org/F4320335795 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2016A010119171 |
| awards[2].funder_display_name | Science and Technology Planning Project of Guangdong Province |
| awards[3].id | https://openalex.org/G8569276088 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 61772205 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G3918016905 |
| awards[4].funder_id | https://openalex.org/F4320321001 |
| awards[4].display_name | |
| awards[4].funder_award_id | 61872084 |
| awards[4].funder_display_name | National Natural Science Foundation of China |
| awards[5].id | https://openalex.org/G6851739845 |
| awards[5].funder_id | https://openalex.org/F4320335795 |
| awards[5].display_name | |
| awards[5].funder_award_id | 2018KJYZ009 |
| awards[5].funder_display_name | Science and Technology Planning Project of Guangdong Province |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 51770 |
| biblio.first_page | 51759 |
| topics[0].id | https://openalex.org/T10102 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9975000023841858 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1804 |
| topics[0].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[0].display_name | scientometrics and bibliometrics research |
| topics[1].id | https://openalex.org/T11937 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9370999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Research Data Management Practices |
| topics[2].id | https://openalex.org/T11986 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9150000214576721 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1802 |
| topics[2].subfield.display_name | Information Systems and Management |
| topics[2].display_name | Scientific Computing and Data Management |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335795 |
| funders[1].ror | |
| funders[1].display_name | Science and Technology Planning Project of Guangdong Province |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7718492746353149 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2778827112 |
| concepts[1].level | 3 |
| concepts[1].score | 0.721598207950592 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q22245680 |
| concepts[1].display_name | Feature engineering |
| concepts[2].id | https://openalex.org/C2776401178 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7025655508041382 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[2].display_name | Feature (linguistics) |
| concepts[3].id | https://openalex.org/C9652623 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6751037240028381 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[3].display_name | Field (mathematics) |
| concepts[4].id | https://openalex.org/C61797465 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6464207172393799 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[4].display_name | Term (time) |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6128306984901428 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C177212765 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5888069272041321 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[6].display_name | Workflow |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5748758912086487 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4753651022911072 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.45858240127563477 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C45804977 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41292959451675415 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[10].display_name | Predictive modelling |
| concepts[11].id | https://openalex.org/C108583219 |
| concepts[11].level | 2 |
| concepts[11].score | 0.133697509765625 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[11].display_name | Deep learning |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.06636965274810791 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.06591758131980896 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C202444582 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[15].display_name | Pure mathematics |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7718492746353149 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/feature-engineering |
| keywords[1].score | 0.721598207950592 |
| keywords[1].display_name | Feature engineering |
| keywords[2].id | https://openalex.org/keywords/feature |
| keywords[2].score | 0.7025655508041382 |
| keywords[2].display_name | Feature (linguistics) |
| keywords[3].id | https://openalex.org/keywords/field |
| keywords[3].score | 0.6751037240028381 |
| keywords[3].display_name | Field (mathematics) |
| keywords[4].id | https://openalex.org/keywords/term |
| keywords[4].score | 0.6464207172393799 |
| keywords[4].display_name | Term (time) |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.6128306984901428 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/workflow |
| keywords[6].score | 0.5888069272041321 |
| keywords[6].display_name | Workflow |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.5748758912086487 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4753651022911072 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.45858240127563477 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/predictive-modelling |
| keywords[10].score | 0.41292959451675415 |
| keywords[10].display_name | Predictive modelling |
| keywords[11].id | https://openalex.org/keywords/deep-learning |
| keywords[11].score | 0.133697509765625 |
| keywords[11].display_name | Deep learning |
| keywords[12].id | https://openalex.org/keywords/database |
| keywords[12].score | 0.06636965274810791 |
| keywords[12].display_name | Database |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.06591758131980896 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/access.2019.2910239 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08685097.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2019.2910239 |
| locations[1].id | pmh:oai:doaj.org/article:463f7fa1484e4b7bae39733225a56b44 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 7, Pp 51759-51770 (2019) |
| locations[1].landing_page_url | https://doaj.org/article/463f7fa1484e4b7bae39733225a56b44 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5024398284 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3348-7727 |
| authorships[0].author.display_name | Ziming Wu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I90610280 |
| authorships[0].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | South China University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ziming Wu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[1].author.id | https://openalex.org/A5007440245 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6876-1795 |
| authorships[1].author.display_name | Weiwei Lin |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I90610280 |
| authorships[1].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | South China University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Weiwei Lin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[2].author.id | https://openalex.org/A5101661654 |
| authorships[2].author.orcid | https://orcid.org/0009-0003-3764-7772 |
| authorships[2].author.display_name | Pan Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[2].affiliations[0].raw_affiliation_string | Chu Kochen College, Zhejiang University, Hangzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I76130692 |
| authorships[2].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Zhejiang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pan Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Chu Kochen College, Zhejiang University, Hangzhou, China |
| authorships[3].author.id | https://openalex.org/A5083159790 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jingbang Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[3].affiliations[0].raw_affiliation_string | Chu Kochen College, Zhejiang University, Hangzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I76130692 |
| authorships[3].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhejiang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jingbang Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Chu Kochen College, Zhejiang University, Hangzhou, China |
| authorships[4].author.id | https://openalex.org/A5100786429 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5146-388X |
| authorships[4].author.display_name | Li Mao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210147983 |
| authorships[4].affiliations[0].raw_affiliation_string | Guangdong Police College, Guangzhou, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210147983 |
| authorships[4].institutions[0].ror | https://ror.org/05krxyw16 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210147983 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Guangdong Police College |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Li Mao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Guangdong Police College, Guangzhou, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08685097.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting Long-Term Scientific Impact Based on Multi-Field Feature Extraction |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10102 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9975000023841858 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1804 |
| primary_topic.subfield.display_name | Statistics, Probability and Uncertainty |
| primary_topic.display_name | scientometrics and bibliometrics research |
| related_works | https://openalex.org/W1981780420, https://openalex.org/W2182707996, https://openalex.org/W2750075801, https://openalex.org/W3164948662, https://openalex.org/W4400413234, https://openalex.org/W3153597579, https://openalex.org/W4394398790, https://openalex.org/W4399455186, https://openalex.org/W4396920741, https://openalex.org/W2923727989 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2019.2910239 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08685097.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2019.2910239 |
| primary_location.id | doi:10.1109/access.2019.2910239 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08685097.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2019.2910239 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2344286452, https://openalex.org/W2752032793, https://openalex.org/W2295598076, https://openalex.org/W2770804468, https://openalex.org/W2775574671, https://openalex.org/W4232478844, https://openalex.org/W2026430219, https://openalex.org/W2902323525, https://openalex.org/W2889465551, https://openalex.org/W6600729055, https://openalex.org/W2017403239, https://openalex.org/W2084958200, https://openalex.org/W6630488252, https://openalex.org/W2124689612, https://openalex.org/W2325034227, https://openalex.org/W4231256769, https://openalex.org/W1968900087, https://openalex.org/W4235654740, https://openalex.org/W2808494527, https://openalex.org/W1976462278, https://openalex.org/W2725915207, https://openalex.org/W2765658614, https://openalex.org/W2005706022, https://openalex.org/W2000574324, https://openalex.org/W2128438887, https://openalex.org/W2891214541, https://openalex.org/W2067953767, https://openalex.org/W2884830853, https://openalex.org/W2761801637, https://openalex.org/W2783250069, https://openalex.org/W1718257212, https://openalex.org/W1601506792, https://openalex.org/W1974674295, https://openalex.org/W2517070929, https://openalex.org/W6731987836, https://openalex.org/W2346028821, https://openalex.org/W2082032447, https://openalex.org/W2573225424, https://openalex.org/W2951851909, https://openalex.org/W18293852 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 32, 82, 153 |
| abstract_inverted_index.10 | 24 |
| abstract_inverted_index.In | 56, 103 |
| abstract_inverted_index.in | 26 |
| abstract_inverted_index.it | 150 |
| abstract_inverted_index.of | 11, 45, 50, 97, 124, 144 |
| abstract_inverted_index.on | 6, 39, 70, 88 |
| abstract_inverted_index.to | 19, 115, 120 |
| abstract_inverted_index.we | 14, 30, 59, 80, 107 |
| abstract_inverted_index.The | 43, 131 |
| abstract_inverted_index.and | 53, 65, 99, 112, 149 |
| abstract_inverted_index.can | 139 |
| abstract_inverted_index.for | 156 |
| abstract_inverted_index.our | 46 |
| abstract_inverted_index.set | 119 |
| abstract_inverted_index.the | 8, 27, 95, 104, 109, 116, 125, 128, 136, 142 |
| abstract_inverted_index.use | 123 |
| abstract_inverted_index.also | 151 |
| abstract_inverted_index.been | 3 |
| abstract_inverted_index.both | 94 |
| abstract_inverted_index.from | 127 |
| abstract_inverted_index.full | 122 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.lack | 16 |
| abstract_inverted_index.make | 121 |
| abstract_inverted_index.many | 4 |
| abstract_inverted_index.that | 135 |
| abstract_inverted_index.time | 96 |
| abstract_inverted_index.when | 75 |
| abstract_inverted_index.based | 38, 69, 87 |
| abstract_inverted_index.basic | 110 |
| abstract_inverted_index.model | 37, 48, 54, 105, 111, 114, 138 |
| abstract_inverted_index.noise | 113 |
| abstract_inverted_index.order | 101 |
| abstract_inverted_index.still | 15 |
| abstract_inverted_index.there | 1 |
| abstract_inverted_index.three | 71 |
| abstract_inverted_index.which | 92 |
| abstract_inverted_index.years | 25 |
| abstract_inverted_index.adjust | 108 |
| abstract_inverted_index.author | 100 |
| abstract_inverted_index.impact | 10, 35, 84, 147 |
| abstract_inverted_index.method | 86 |
| abstract_inverted_index.offers | 152 |
| abstract_inverted_index.stably | 140 |
| abstract_inverted_index.extract | 60 |
| abstract_inverted_index.feature | 41, 51, 57, 68 |
| abstract_inverted_index.fields. | 73 |
| abstract_inverted_index.future. | 28 |
| abstract_inverted_index.impact, | 22 |
| abstract_inverted_index.improve | 141 |
| abstract_inverted_index.methods | 18 |
| abstract_inverted_index.network | 67, 78 |
| abstract_inverted_index.pattern | 155 |
| abstract_inverted_index.predict | 20 |
| abstract_inverted_index.propose | 31, 81 |
| abstract_inverted_index.results | 133 |
| abstract_inverted_index.studies | 5 |
| abstract_inverted_index.However, | 13 |
| abstract_inverted_index.academic | 90 |
| abstract_inverted_index.accuracy | 143 |
| abstract_inverted_index.consists | 49 |
| abstract_inverted_index.dataset. | 130 |
| abstract_inverted_index.factors. | 102 |
| abstract_inverted_index.feature, | 62, 64, 79 |
| abstract_inverted_index.network, | 91 |
| abstract_inverted_index.original | 129 |
| abstract_inverted_index.problem. | 159 |
| abstract_inverted_index.proposed | 47, 137 |
| abstract_inverted_index.training | 118 |
| abstract_inverted_index.workflow | 44 |
| abstract_inverted_index.Moreover, | 74 |
| abstract_inverted_index.Nowadays, | 0 |
| abstract_inverted_index.attribute | 61 |
| abstract_inverted_index.considers | 93 |
| abstract_inverted_index.different | 72, 117 |
| abstract_inverted_index.effective | 17 |
| abstract_inverted_index.ensemble, | 106 |
| abstract_inverted_index.ensemble. | 55 |
| abstract_inverted_index.long-term | 21, 33, 157 |
| abstract_inverted_index.scholars' | 145 |
| abstract_inverted_index.scholars. | 12 |
| abstract_inverted_index.Therefore, | 29 |
| abstract_inverted_index.especially | 23 |
| abstract_inverted_index.evaluating | 7 |
| abstract_inverted_index.evaluation | 85 |
| abstract_inverted_index.experiment | 132 |
| abstract_inverted_index.extracting | 76 |
| abstract_inverted_index.prediction | 36, 154, 158 |
| abstract_inverted_index.scientific | 9, 34, 83, 146 |
| abstract_inverted_index.demonstrate | 134 |
| abstract_inverted_index.engineering | 52 |
| abstract_inverted_index.extraction. | 42 |
| abstract_inverted_index.information | 126 |
| abstract_inverted_index.multi-field | 40 |
| abstract_inverted_index.prediction, | 148 |
| abstract_inverted_index.publication | 98 |
| abstract_inverted_index.time-series | 63 |
| abstract_inverted_index.engineering, | 58 |
| abstract_inverted_index.heterogeneous | 66, 77, 89 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.88026697 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |