Predicting Mental Health Illness using Machine Learning Algorithms Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/2161/1/012021
Early detection of mental health issues allows specialists to treat them more effectively and it improves patient’s quality of life. Mental health is about one’s psychological, emotional, and social well-being. It affects the way how one thinks, feels, and acts. Mental health is very important at every stage of life, from childhood and adolescence through adulthood. This study identified five machine learning techniques and assessed their accuracy in identifying mental health issues using several accuracy criteria. The five machine learning techniques are Logistic Regression, K-NN Classifier, Decision Tree Classifier, Random Forest, and Stacking. We have compared these techniques and implemented them and also obtained the most accurate one in Stacking technique based with an accuracy of prediction 81.75%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1742-6596/2161/1/012021
- https://iopscience.iop.org/article/10.1088/1742-6596/2161/1/012021/pdf
- OA Status
- diamond
- Cited By
- 74
- References
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4205970017
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4205970017Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/2161/1/012021Digital Object Identifier
- Title
-
Predicting Mental Health Illness using Machine Learning AlgorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
K Vaishnavi, Ullas Kamath, B. Ashwath Rao, N. V. Subba ReddyList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/2161/1/012021Publisher landing page
- PDF URL
-
https://iopscience.iop.org/article/10.1088/1742-6596/2161/1/012021/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://iopscience.iop.org/article/10.1088/1742-6596/2161/1/012021/pdfDirect OA link when available
- Concepts
-
Machine learning, Random forest, Mental health, Artificial intelligence, Decision tree, Logistic regression, Classifier (UML), Computer science, Decision tree learning, Mental illness, Psychology, Algorithm, PsychiatryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
74Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 18, 2024: 37, 2023: 14, 2022: 5Per-year citation counts (last 5 years)
- References (count)
-
5Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4205970017 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/2161/1/012021 |
| ids.doi | https://doi.org/10.1088/1742-6596/2161/1/012021 |
| ids.openalex | https://openalex.org/W4205970017 |
| fwci | 20.98979958 |
| type | article |
| title | Predicting Mental Health Illness using Machine Learning Algorithms |
| biblio.issue | 1 |
| biblio.volume | 2161 |
| biblio.last_page | 012021 |
| biblio.first_page | 012021 |
| topics[0].id | https://openalex.org/T12488 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9835000038146973 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3207 |
| topics[0].subfield.display_name | Social Psychology |
| topics[0].display_name | Mental Health via Writing |
| topics[1].id | https://openalex.org/T11396 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9646000266075134 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Artificial Intelligence in Healthcare |
| topics[2].id | https://openalex.org/T13702 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9440000057220459 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C119857082 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7409124374389648 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[0].display_name | Machine learning |
| concepts[1].id | https://openalex.org/C169258074 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7307394742965698 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[1].display_name | Random forest |
| concepts[2].id | https://openalex.org/C134362201 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6859697699546814 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q317309 |
| concepts[2].display_name | Mental health |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6782110333442688 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C84525736 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6657454967498779 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[4].display_name | Decision tree |
| concepts[5].id | https://openalex.org/C151956035 |
| concepts[5].level | 2 |
| concepts[5].score | 0.661211371421814 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[5].display_name | Logistic regression |
| concepts[6].id | https://openalex.org/C95623464 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5374501347541809 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[6].display_name | Classifier (UML) |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.5322328209877014 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C5481197 |
| concepts[8].level | 3 |
| concepts[8].score | 0.47242414951324463 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q16766476 |
| concepts[8].display_name | Decision tree learning |
| concepts[9].id | https://openalex.org/C2776674806 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4711633622646332 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12135 |
| concepts[9].display_name | Mental illness |
| concepts[10].id | https://openalex.org/C15744967 |
| concepts[10].level | 0 |
| concepts[10].score | 0.4267398715019226 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[10].display_name | Psychology |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4164341390132904 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C118552586 |
| concepts[12].level | 1 |
| concepts[12].score | 0.21908774971961975 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[12].display_name | Psychiatry |
| keywords[0].id | https://openalex.org/keywords/machine-learning |
| keywords[0].score | 0.7409124374389648 |
| keywords[0].display_name | Machine learning |
| keywords[1].id | https://openalex.org/keywords/random-forest |
| keywords[1].score | 0.7307394742965698 |
| keywords[1].display_name | Random forest |
| keywords[2].id | https://openalex.org/keywords/mental-health |
| keywords[2].score | 0.6859697699546814 |
| keywords[2].display_name | Mental health |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6782110333442688 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/decision-tree |
| keywords[4].score | 0.6657454967498779 |
| keywords[4].display_name | Decision tree |
| keywords[5].id | https://openalex.org/keywords/logistic-regression |
| keywords[5].score | 0.661211371421814 |
| keywords[5].display_name | Logistic regression |
| keywords[6].id | https://openalex.org/keywords/classifier |
| keywords[6].score | 0.5374501347541809 |
| keywords[6].display_name | Classifier (UML) |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.5322328209877014 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/decision-tree-learning |
| keywords[8].score | 0.47242414951324463 |
| keywords[8].display_name | Decision tree learning |
| keywords[9].id | https://openalex.org/keywords/mental-illness |
| keywords[9].score | 0.4711633622646332 |
| keywords[9].display_name | Mental illness |
| keywords[10].id | https://openalex.org/keywords/psychology |
| keywords[10].score | 0.4267398715019226 |
| keywords[10].display_name | Psychology |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.4164341390132904 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/psychiatry |
| keywords[12].score | 0.21908774971961975 |
| keywords[12].display_name | Psychiatry |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/2161/1/012021 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/2161/1/012021/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | https://doi.org/10.1088/1742-6596/2161/1/012021 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5013789773 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | K Vaishnavi |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science & Engg., Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka State, India, PIN-576104 |
| authorships[0].institutions[0].id | https://openalex.org/I164861460 |
| authorships[0].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Konda Vaishnavi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Science & Engg., Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka State, India, PIN-576104 |
| authorships[1].author.id | https://openalex.org/A5080386523 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4237-2606 |
| authorships[1].author.display_name | Ullas Kamath |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science & Engg., Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka State, India, PIN-576104 |
| authorships[1].institutions[0].id | https://openalex.org/I164861460 |
| authorships[1].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | U Nikhitha Kamath |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Computer Science & Engg., Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka State, India, PIN-576104 |
| authorships[2].author.id | https://openalex.org/A5044492465 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8528-1646 |
| authorships[2].author.display_name | B. Ashwath Rao |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science & Engg., Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka State, India, PIN-576104 |
| authorships[2].institutions[0].id | https://openalex.org/I164861460 |
| authorships[2].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | B Ashwath Rao |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Computer Science & Engg., Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka State, India, PIN-576104 |
| authorships[3].author.id | https://openalex.org/A5063858151 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6802-6261 |
| authorships[3].author.display_name | N. V. Subba Reddy |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science & Engg., Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka State, India, PIN-576104 |
| authorships[3].institutions[0].id | https://openalex.org/I164861460 |
| authorships[3].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | N V Subba Reddy |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Computer Science & Engg., Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka State, India, PIN-576104 |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://iopscience.iop.org/article/10.1088/1742-6596/2161/1/012021/pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting Mental Health Illness using Machine Learning Algorithms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12488 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9835000038146973 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3207 |
| primary_topic.subfield.display_name | Social Psychology |
| primary_topic.display_name | Mental Health via Writing |
| related_works | https://openalex.org/W2889302474, https://openalex.org/W4366990902, https://openalex.org/W4317732970, https://openalex.org/W4388550696, https://openalex.org/W4321636153, https://openalex.org/W4313289487, https://openalex.org/W2591672004, https://openalex.org/W1982169401, https://openalex.org/W2356463514, https://openalex.org/W4319437832 |
| cited_by_count | 74 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 18 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 37 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 14 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/2161/1/012021 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/2161/1/012021/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1742-6596/2161/1/012021 |
| primary_location.id | doi:10.1088/1742-6596/2161/1/012021 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/2161/1/012021/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | https://doi.org/10.1088/1742-6596/2161/1/012021 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2988595016, https://openalex.org/W2985355520, https://openalex.org/W2766597586, https://openalex.org/W2912581524, https://openalex.org/W2796057380 |
| referenced_works_count | 5 |
| abstract_inverted_index.It | 31 |
| abstract_inverted_index.We | 94 |
| abstract_inverted_index.an | 114 |
| abstract_inverted_index.at | 46 |
| abstract_inverted_index.in | 68, 109 |
| abstract_inverted_index.is | 23, 43 |
| abstract_inverted_index.it | 15 |
| abstract_inverted_index.of | 3, 19, 49, 116 |
| abstract_inverted_index.to | 9 |
| abstract_inverted_index.The | 77 |
| abstract_inverted_index.and | 14, 28, 39, 53, 64, 92, 99, 102 |
| abstract_inverted_index.are | 82 |
| abstract_inverted_index.how | 35 |
| abstract_inverted_index.one | 36, 108 |
| abstract_inverted_index.the | 33, 105 |
| abstract_inverted_index.way | 34 |
| abstract_inverted_index.K-NN | 85 |
| abstract_inverted_index.This | 57 |
| abstract_inverted_index.Tree | 88 |
| abstract_inverted_index.also | 103 |
| abstract_inverted_index.five | 60, 78 |
| abstract_inverted_index.from | 51 |
| abstract_inverted_index.have | 95 |
| abstract_inverted_index.more | 12 |
| abstract_inverted_index.most | 106 |
| abstract_inverted_index.them | 11, 101 |
| abstract_inverted_index.very | 44 |
| abstract_inverted_index.with | 113 |
| abstract_inverted_index.Early | 1 |
| abstract_inverted_index.about | 24 |
| abstract_inverted_index.acts. | 40 |
| abstract_inverted_index.based | 112 |
| abstract_inverted_index.every | 47 |
| abstract_inverted_index.life, | 50 |
| abstract_inverted_index.life. | 20 |
| abstract_inverted_index.stage | 48 |
| abstract_inverted_index.study | 58 |
| abstract_inverted_index.their | 66 |
| abstract_inverted_index.these | 97 |
| abstract_inverted_index.treat | 10 |
| abstract_inverted_index.using | 73 |
| abstract_inverted_index.Mental | 21, 41 |
| abstract_inverted_index.Random | 90 |
| abstract_inverted_index.allows | 7 |
| abstract_inverted_index.feels, | 38 |
| abstract_inverted_index.health | 5, 22, 42, 71 |
| abstract_inverted_index.issues | 6, 72 |
| abstract_inverted_index.mental | 4, 70 |
| abstract_inverted_index.social | 29 |
| abstract_inverted_index.81.75%. | 118 |
| abstract_inverted_index.Forest, | 91 |
| abstract_inverted_index.affects | 32 |
| abstract_inverted_index.machine | 61, 79 |
| abstract_inverted_index.one’s | 25 |
| abstract_inverted_index.quality | 18 |
| abstract_inverted_index.several | 74 |
| abstract_inverted_index.thinks, | 37 |
| abstract_inverted_index.through | 55 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Decision | 87 |
| abstract_inverted_index.Logistic | 83 |
| abstract_inverted_index.Stacking | 110 |
| abstract_inverted_index.accuracy | 67, 75, 115 |
| abstract_inverted_index.accurate | 107 |
| abstract_inverted_index.assessed | 65 |
| abstract_inverted_index.compared | 96 |
| abstract_inverted_index.improves | 16 |
| abstract_inverted_index.learning | 62, 80 |
| abstract_inverted_index.obtained | 104 |
| abstract_inverted_index.Stacking. | 93 |
| abstract_inverted_index.childhood | 52 |
| abstract_inverted_index.criteria. | 76 |
| abstract_inverted_index.detection | 2 |
| abstract_inverted_index.important | 45 |
| abstract_inverted_index.technique | 111 |
| abstract_inverted_index.adulthood. | 56 |
| abstract_inverted_index.emotional, | 27 |
| abstract_inverted_index.identified | 59 |
| abstract_inverted_index.prediction | 117 |
| abstract_inverted_index.techniques | 63, 81, 98 |
| abstract_inverted_index.Classifier, | 86, 89 |
| abstract_inverted_index.Regression, | 84 |
| abstract_inverted_index.adolescence | 54 |
| abstract_inverted_index.effectively | 13 |
| abstract_inverted_index.identifying | 69 |
| abstract_inverted_index.implemented | 100 |
| abstract_inverted_index.patient’s | 17 |
| abstract_inverted_index.specialists | 8 |
| abstract_inverted_index.well-being. | 30 |
| abstract_inverted_index.psychological, | 26 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5080386523, https://openalex.org/A5013789773, https://openalex.org/A5063858151, https://openalex.org/A5044492465 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I164861460 |
| citation_normalized_percentile.value | 0.99576149 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |