Predicting moose behaviors from tri-axial accelerometer data using a supervised classification algorithm Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1186/s40317-023-00343-0
Background Monitoring the behavior of wild animals in situ can improve our understanding of how their behavior is related to their habitat and affected by disturbances and changes in their environment. Moose ( Alces alces ) are keystone species in their boreal habitats, where they are facing environmental changes and disturbances from human activities. How these potential stressors can impact individuals and populations is unclear, in part due to our limited knowledge of the physiology and behavior of moose and how individuals can compensate for stress and disturbances they experience. We collected data from collar-mounted fine-scale tri-axial accelerometers deployed on captive moose in combination with detailed behavioral observations to train a random forest supervised classification algorithm to classify moose accelerometer data into discrete behaviors. To investigate the generalizability of our model to collared new individuals, we quantified the variation in classification performance among individuals. Results Our machine learning model successfully classified 3-s accelerometer data intervals from 12 Alaskan moose ( A. a. gigas ) and two European moose ( A. a. alces ) into seven behaviors comprising 97.6% of the 395 h of behavioral observations conducted in summer, fall and spring. Classification performance varied among behaviors and individuals and was generally dependent on sample size. Classification performance was highest for the most common behaviors lying with the head elevated, ruminating and foraging (precision and recall across all individuals between 0.74 and 0.90) comprising 79% of our data, and lower and more variable among individuals for the four less common behaviors lying with head down or tucked, standing, walking and running (precision and recall across all individuals between 0.28 and 0.79) comprising 21% of our data. Conclusions We demonstrate the use of animal-borne accelerometer data to distinguish among seven main behaviors of captive moose and discuss generalizability of the results to individuals in the wild. Our results can support future efforts to investigate the detailed behavior of collared wild moose, for example in the context of disturbance responses, time budgets and behavior-specific habitat selection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s40317-023-00343-0
- https://animalbiotelemetry.biomedcentral.com/counter/pdf/10.1186/s40317-023-00343-0
- OA Status
- gold
- Cited By
- 14
- References
- 78
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386316938
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386316938Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s40317-023-00343-0Digital Object Identifier
- Title
-
Predicting moose behaviors from tri-axial accelerometer data using a supervised classification algorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-31Full publication date if available
- Authors
-
T. Kirchner, Olivier Devineau, Marianna Chimienti, Daniel P. Thompson, John A. Crouse, Alina L. Evans, Barbara Zimmermann, Ane EriksenList of authors in order
- Landing page
-
https://doi.org/10.1186/s40317-023-00343-0Publisher landing page
- PDF URL
-
https://animalbiotelemetry.biomedcentral.com/counter/pdf/10.1186/s40317-023-00343-0Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://animalbiotelemetry.biomedcentral.com/counter/pdf/10.1186/s40317-023-00343-0Direct OA link when available
- Concepts
-
Foraging, Accelerometer, Generalizability theory, Ecology, Habitat, Random forest, Biology, Machine learning, Statistics, Computer science, Mathematics, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 7Per-year citation counts (last 5 years)
- References (count)
-
78Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386316938 |
|---|---|
| doi | https://doi.org/10.1186/s40317-023-00343-0 |
| ids.doi | https://doi.org/10.1186/s40317-023-00343-0 |
| ids.openalex | https://openalex.org/W4386316938 |
| fwci | 7.2854685 |
| type | article |
| title | Predicting moose behaviors from tri-axial accelerometer data using a supervised classification algorithm |
| awards[0].id | https://openalex.org/G1766176637 |
| awards[0].funder_id | https://openalex.org/F4320310285 |
| awards[0].display_name | |
| awards[0].funder_award_id | Grant number AKW-4 Project No. 1.63 |
| awards[0].funder_display_name | Alaska Department of Fish and Game |
| biblio.issue | 1 |
| biblio.volume | 11 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10838 |
| topics[0].field.id | https://openalex.org/fields/34 |
| topics[0].field.display_name | Veterinary |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3404 |
| topics[0].subfield.display_name | Small Animals |
| topics[0].display_name | Animal Behavior and Welfare Studies |
| topics[1].id | https://openalex.org/T10199 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2303 |
| topics[1].subfield.display_name | Ecology |
| topics[1].display_name | Wildlife Ecology and Conservation |
| topics[2].id | https://openalex.org/T11228 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9970999956130981 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1105 |
| topics[2].subfield.display_name | Ecology, Evolution, Behavior and Systematics |
| topics[2].display_name | Bat Biology and Ecology Studies |
| funders[0].id | https://openalex.org/F4320310285 |
| funders[0].ror | https://ror.org/02rh7vj17 |
| funders[0].display_name | Alaska Department of Fish and Game |
| is_xpac | False |
| apc_list.value | 1390 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1704 |
| apc_paid.value | 1390 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1704 |
| concepts[0].id | https://openalex.org/C165287380 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7425508499145508 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2916569 |
| concepts[0].display_name | Foraging |
| concepts[1].id | https://openalex.org/C89805583 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6960830092430115 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192940 |
| concepts[1].display_name | Accelerometer |
| concepts[2].id | https://openalex.org/C27158222 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5509945750236511 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5532422 |
| concepts[2].display_name | Generalizability theory |
| concepts[3].id | https://openalex.org/C18903297 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4740031659603119 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[3].display_name | Ecology |
| concepts[4].id | https://openalex.org/C185933670 |
| concepts[4].level | 2 |
| concepts[4].score | 0.45115670561790466 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q52105 |
| concepts[4].display_name | Habitat |
| concepts[5].id | https://openalex.org/C169258074 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42013275623321533 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[5].display_name | Random forest |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.41902515292167664 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3140072226524353 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.24959459900856018 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.19751667976379395 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1627425253391266 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/foraging |
| keywords[0].score | 0.7425508499145508 |
| keywords[0].display_name | Foraging |
| keywords[1].id | https://openalex.org/keywords/accelerometer |
| keywords[1].score | 0.6960830092430115 |
| keywords[1].display_name | Accelerometer |
| keywords[2].id | https://openalex.org/keywords/generalizability-theory |
| keywords[2].score | 0.5509945750236511 |
| keywords[2].display_name | Generalizability theory |
| keywords[3].id | https://openalex.org/keywords/ecology |
| keywords[3].score | 0.4740031659603119 |
| keywords[3].display_name | Ecology |
| keywords[4].id | https://openalex.org/keywords/habitat |
| keywords[4].score | 0.45115670561790466 |
| keywords[4].display_name | Habitat |
| keywords[5].id | https://openalex.org/keywords/random-forest |
| keywords[5].score | 0.42013275623321533 |
| keywords[5].display_name | Random forest |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.41902515292167664 |
| keywords[6].display_name | Biology |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3140072226524353 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.24959459900856018 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.19751667976379395 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.1627425253391266 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1186/s40317-023-00343-0 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764740675 |
| locations[0].source.issn | 2050-3385 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2050-3385 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Animal Biotelemetry |
| locations[0].source.host_organization | https://openalex.org/P4310320256 |
| locations[0].source.host_organization_name | BioMed Central |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | BioMed Central, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://animalbiotelemetry.biomedcentral.com/counter/pdf/10.1186/s40317-023-00343-0 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Animal Biotelemetry |
| locations[0].landing_page_url | https://doi.org/10.1186/s40317-023-00343-0 |
| locations[1].id | pmh:oai:doaj.org/article:9630ad01a6b7431591a8666445b990db |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Animal Biotelemetry, Vol 11, Iss 1, Pp 1-13 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/9630ad01a6b7431591a8666445b990db |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5050599110 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6153-5090 |
| authorships[0].author.display_name | T. Kirchner |
| authorships[0].countries | NO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210116649 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstads vei 80, 2480, Koppang, Norway |
| authorships[0].institutions[0].id | https://openalex.org/I4210116649 |
| authorships[0].institutions[0].ror | https://ror.org/02dx4dc92 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210116649 |
| authorships[0].institutions[0].country_code | NO |
| authorships[0].institutions[0].display_name | University of Inland Norway |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Theresa M. Kirchner |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstads vei 80, 2480, Koppang, Norway |
| authorships[1].author.id | https://openalex.org/A5046743959 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7625-2816 |
| authorships[1].author.display_name | Olivier Devineau |
| authorships[1].countries | NO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210116649 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstads vei 80, 2480, Koppang, Norway |
| authorships[1].institutions[0].id | https://openalex.org/I4210116649 |
| authorships[1].institutions[0].ror | https://ror.org/02dx4dc92 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210116649 |
| authorships[1].institutions[0].country_code | NO |
| authorships[1].institutions[0].display_name | University of Inland Norway |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Olivier Devineau |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstads vei 80, 2480, Koppang, Norway |
| authorships[2].author.id | https://openalex.org/A5054720686 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8236-9332 |
| authorships[2].author.display_name | Marianna Chimienti |
| authorships[2].countries | FR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I4210095510, https://openalex.org/I78744979 |
| authorships[2].affiliations[0].raw_affiliation_string | Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, La Rochelle, France |
| authorships[2].institutions[0].id | https://openalex.org/I1294671590 |
| authorships[2].institutions[0].ror | https://ror.org/02feahw73 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I1294671590 |
| authorships[2].institutions[0].country_code | FR |
| authorships[2].institutions[0].display_name | Centre National de la Recherche Scientifique |
| authorships[2].institutions[1].id | https://openalex.org/I4210095510 |
| authorships[2].institutions[1].ror | https://ror.org/00s8hq550 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I4210095510, https://openalex.org/I4210107625, https://openalex.org/I78744979 |
| authorships[2].institutions[1].country_code | FR |
| authorships[2].institutions[1].display_name | Centre d'Etudes Biologiques de Chizé |
| authorships[2].institutions[2].id | https://openalex.org/I78744979 |
| authorships[2].institutions[2].ror | https://ror.org/04mv1z119 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I78744979 |
| authorships[2].institutions[2].country_code | FR |
| authorships[2].institutions[2].display_name | La Rochelle Université |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Marianna Chimienti |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, La Rochelle, France |
| authorships[3].author.id | https://openalex.org/A5045203687 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8166-6549 |
| authorships[3].author.display_name | Daniel P. Thompson |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I104411113 |
| authorships[3].affiliations[0].raw_affiliation_string | Alaska Department of Fish and Game, Kenai Moose Research Center, 43961 Kalifornsky Beach Road, Suite B, Soldotna, AK, 99669, USA |
| authorships[3].institutions[0].id | https://openalex.org/I104411113 |
| authorships[3].institutions[0].ror | https://ror.org/02rh7vj17 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I104411113 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Alaska Department of Fish and Game |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Daniel P. Thompson |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Alaska Department of Fish and Game, Kenai Moose Research Center, 43961 Kalifornsky Beach Road, Suite B, Soldotna, AK, 99669, USA |
| authorships[4].author.id | https://openalex.org/A5086371921 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | John A. Crouse |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I104411113 |
| authorships[4].affiliations[0].raw_affiliation_string | Alaska Department of Fish and Game, Kenai Moose Research Center, 43961 Kalifornsky Beach Road, Suite B, Soldotna, AK, 99669, USA |
| authorships[4].institutions[0].id | https://openalex.org/I104411113 |
| authorships[4].institutions[0].ror | https://ror.org/02rh7vj17 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I104411113 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Alaska Department of Fish and Game |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | John Crouse |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Alaska Department of Fish and Game, Kenai Moose Research Center, 43961 Kalifornsky Beach Road, Suite B, Soldotna, AK, 99669, USA |
| authorships[5].author.id | https://openalex.org/A5085455087 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0513-4887 |
| authorships[5].author.display_name | Alina L. Evans |
| authorships[5].countries | NO |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210116649 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstads vei 80, 2480, Koppang, Norway |
| authorships[5].institutions[0].id | https://openalex.org/I4210116649 |
| authorships[5].institutions[0].ror | https://ror.org/02dx4dc92 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210116649 |
| authorships[5].institutions[0].country_code | NO |
| authorships[5].institutions[0].display_name | University of Inland Norway |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Alina L. Evans |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstads vei 80, 2480, Koppang, Norway |
| authorships[6].author.id | https://openalex.org/A5064581276 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5133-9379 |
| authorships[6].author.display_name | Barbara Zimmermann |
| authorships[6].countries | NO |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210116649 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstads vei 80, 2480, Koppang, Norway |
| authorships[6].institutions[0].id | https://openalex.org/I4210116649 |
| authorships[6].institutions[0].ror | https://ror.org/02dx4dc92 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210116649 |
| authorships[6].institutions[0].country_code | NO |
| authorships[6].institutions[0].display_name | University of Inland Norway |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Barbara Zimmermann |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstads vei 80, 2480, Koppang, Norway |
| authorships[7].author.id | https://openalex.org/A5060630737 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9073-8812 |
| authorships[7].author.display_name | Ane Eriksen |
| authorships[7].countries | NO |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210116649 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstads vei 80, 2480, Koppang, Norway |
| authorships[7].institutions[0].id | https://openalex.org/I4210116649 |
| authorships[7].institutions[0].ror | https://ror.org/02dx4dc92 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210116649 |
| authorships[7].institutions[0].country_code | NO |
| authorships[7].institutions[0].display_name | University of Inland Norway |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Ane Eriksen |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstads vei 80, 2480, Koppang, Norway |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://animalbiotelemetry.biomedcentral.com/counter/pdf/10.1186/s40317-023-00343-0 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting moose behaviors from tri-axial accelerometer data using a supervised classification algorithm |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10838 |
| primary_topic.field.id | https://openalex.org/fields/34 |
| primary_topic.field.display_name | Veterinary |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3404 |
| primary_topic.subfield.display_name | Small Animals |
| primary_topic.display_name | Animal Behavior and Welfare Studies |
| related_works | https://openalex.org/W4200081355, https://openalex.org/W3081944365, https://openalex.org/W2118717649, https://openalex.org/W2135179174, https://openalex.org/W2413243053, https://openalex.org/W1932300341, https://openalex.org/W410723623, https://openalex.org/W2294784349, https://openalex.org/W2015341305, https://openalex.org/W2035068594 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1186/s40317-023-00343-0 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764740675 |
| best_oa_location.source.issn | 2050-3385 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2050-3385 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Animal Biotelemetry |
| best_oa_location.source.host_organization | https://openalex.org/P4310320256 |
| best_oa_location.source.host_organization_name | BioMed Central |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://animalbiotelemetry.biomedcentral.com/counter/pdf/10.1186/s40317-023-00343-0 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Animal Biotelemetry |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s40317-023-00343-0 |
| primary_location.id | doi:10.1186/s40317-023-00343-0 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764740675 |
| primary_location.source.issn | 2050-3385 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2050-3385 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Animal Biotelemetry |
| primary_location.source.host_organization | https://openalex.org/P4310320256 |
| primary_location.source.host_organization_name | BioMed Central |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://animalbiotelemetry.biomedcentral.com/counter/pdf/10.1186/s40317-023-00343-0 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Animal Biotelemetry |
| primary_location.landing_page_url | https://doi.org/10.1186/s40317-023-00343-0 |
| publication_date | 2023-08-31 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2056470557, https://openalex.org/W3120419043, https://openalex.org/W3177261139, https://openalex.org/W2054820883, https://openalex.org/W2005161190, https://openalex.org/W2963978069, https://openalex.org/W4210860654, https://openalex.org/W2146220007, https://openalex.org/W2141419541, https://openalex.org/W2137671819, https://openalex.org/W2152779085, https://openalex.org/W2016313455, https://openalex.org/W2119826316, https://openalex.org/W2116900702, https://openalex.org/W2951394506, https://openalex.org/W2996518129, https://openalex.org/W2120553757, https://openalex.org/W2162989219, https://openalex.org/W2098208279, https://openalex.org/W1936068024, https://openalex.org/W3020914962, https://openalex.org/W4226368078, https://openalex.org/W2136375252, https://openalex.org/W2327437940, https://openalex.org/W2570554073, https://openalex.org/W2315744253, https://openalex.org/W2588311666, https://openalex.org/W6640422800, https://openalex.org/W2065653475, https://openalex.org/W4226064609, https://openalex.org/W2008433705, https://openalex.org/W2892546544, https://openalex.org/W3114788624, https://openalex.org/W2103331863, https://openalex.org/W2079671583, https://openalex.org/W2051705497, https://openalex.org/W2740976513, https://openalex.org/W2908494217, https://openalex.org/W2908451840, https://openalex.org/W2039851865, https://openalex.org/W2042342581, https://openalex.org/W3169841595, https://openalex.org/W2896509164, https://openalex.org/W4309469405, https://openalex.org/W1990930515, https://openalex.org/W2051391178, https://openalex.org/W2065716900, https://openalex.org/W2908432956, https://openalex.org/W2935643394, https://openalex.org/W1998113550, https://openalex.org/W2889839644, https://openalex.org/W3123385650, https://openalex.org/W2149948145, https://openalex.org/W2346578806, https://openalex.org/W2255128034, https://openalex.org/W2596055706, https://openalex.org/W2911964244, https://openalex.org/W1489463871, https://openalex.org/W2139086914, https://openalex.org/W4256060553, https://openalex.org/W2766899726, https://openalex.org/W3044430114, https://openalex.org/W4297858035, https://openalex.org/W2888728157, https://openalex.org/W3037988843, https://openalex.org/W2995677836, https://openalex.org/W4206637451, https://openalex.org/W4221060307, https://openalex.org/W2134295242, https://openalex.org/W3039670661, https://openalex.org/W1988135991, https://openalex.org/W2914266546, https://openalex.org/W1922885767, https://openalex.org/W2102346870, https://openalex.org/W3209242114, https://openalex.org/W2120356803, https://openalex.org/W2912066382, https://openalex.org/W2582743722 |
| referenced_works_count | 78 |
| abstract_inverted_index.( | 33, 160, 169 |
| abstract_inverted_index.) | 36, 164, 173 |
| abstract_inverted_index.a | 111 |
| abstract_inverted_index.h | 182 |
| abstract_inverted_index.12 | 157 |
| abstract_inverted_index.A. | 161, 170 |
| abstract_inverted_index.To | 125 |
| abstract_inverted_index.We | 91, 277 |
| abstract_inverted_index.a. | 162, 171 |
| abstract_inverted_index.by | 25 |
| abstract_inverted_index.in | 8, 29, 40, 66, 103, 140, 187, 302, 322 |
| abstract_inverted_index.is | 18, 64 |
| abstract_inverted_index.of | 5, 14, 73, 78, 129, 179, 183, 235, 273, 281, 291, 297, 316, 325 |
| abstract_inverted_index.on | 100, 203 |
| abstract_inverted_index.or | 255 |
| abstract_inverted_index.to | 20, 69, 109, 117, 132, 285, 300, 311 |
| abstract_inverted_index.we | 136 |
| abstract_inverted_index.21% | 272 |
| abstract_inverted_index.3-s | 152 |
| abstract_inverted_index.395 | 181 |
| abstract_inverted_index.79% | 234 |
| abstract_inverted_index.How | 55 |
| abstract_inverted_index.Our | 146, 305 |
| abstract_inverted_index.all | 227, 265 |
| abstract_inverted_index.and | 23, 27, 50, 62, 76, 80, 87, 165, 190, 197, 199, 221, 224, 231, 238, 240, 259, 262, 269, 294, 330 |
| abstract_inverted_index.are | 37, 46 |
| abstract_inverted_index.can | 10, 59, 83, 307 |
| abstract_inverted_index.due | 68 |
| abstract_inverted_index.for | 85, 210, 245, 320 |
| abstract_inverted_index.how | 15, 81 |
| abstract_inverted_index.new | 134 |
| abstract_inverted_index.our | 12, 70, 130, 236, 274 |
| abstract_inverted_index.the | 3, 74, 127, 138, 180, 211, 217, 246, 279, 298, 303, 313, 323 |
| abstract_inverted_index.two | 166 |
| abstract_inverted_index.use | 280 |
| abstract_inverted_index.was | 200, 208 |
| abstract_inverted_index.0.28 | 268 |
| abstract_inverted_index.0.74 | 230 |
| abstract_inverted_index.data | 93, 121, 154, 284 |
| abstract_inverted_index.down | 254 |
| abstract_inverted_index.fall | 189 |
| abstract_inverted_index.four | 247 |
| abstract_inverted_index.from | 52, 94, 156 |
| abstract_inverted_index.head | 218, 253 |
| abstract_inverted_index.into | 122, 174 |
| abstract_inverted_index.less | 248 |
| abstract_inverted_index.main | 289 |
| abstract_inverted_index.more | 241 |
| abstract_inverted_index.most | 212 |
| abstract_inverted_index.part | 67 |
| abstract_inverted_index.situ | 9 |
| abstract_inverted_index.they | 45, 89 |
| abstract_inverted_index.time | 328 |
| abstract_inverted_index.wild | 6, 318 |
| abstract_inverted_index.with | 105, 216, 252 |
| abstract_inverted_index.0.79) | 270 |
| abstract_inverted_index.0.90) | 232 |
| abstract_inverted_index.97.6% | 178 |
| abstract_inverted_index.Alces | 34 |
| abstract_inverted_index.Moose | 32 |
| abstract_inverted_index.alces | 35, 172 |
| abstract_inverted_index.among | 143, 195, 243, 287 |
| abstract_inverted_index.data, | 237 |
| abstract_inverted_index.data. | 275 |
| abstract_inverted_index.gigas | 163 |
| abstract_inverted_index.human | 53 |
| abstract_inverted_index.lower | 239 |
| abstract_inverted_index.lying | 215, 251 |
| abstract_inverted_index.model | 131, 149 |
| abstract_inverted_index.moose | 79, 102, 119, 159, 168, 293 |
| abstract_inverted_index.seven | 175, 288 |
| abstract_inverted_index.size. | 205 |
| abstract_inverted_index.their | 16, 21, 30, 41 |
| abstract_inverted_index.these | 56 |
| abstract_inverted_index.train | 110 |
| abstract_inverted_index.where | 44 |
| abstract_inverted_index.wild. | 304 |
| abstract_inverted_index.across | 226, 264 |
| abstract_inverted_index.boreal | 42 |
| abstract_inverted_index.common | 213, 249 |
| abstract_inverted_index.facing | 47 |
| abstract_inverted_index.forest | 113 |
| abstract_inverted_index.future | 309 |
| abstract_inverted_index.impact | 60 |
| abstract_inverted_index.moose, | 319 |
| abstract_inverted_index.random | 112 |
| abstract_inverted_index.recall | 225, 263 |
| abstract_inverted_index.sample | 204 |
| abstract_inverted_index.stress | 86 |
| abstract_inverted_index.varied | 194 |
| abstract_inverted_index.Alaskan | 158 |
| abstract_inverted_index.Results | 145 |
| abstract_inverted_index.animals | 7 |
| abstract_inverted_index.between | 229, 267 |
| abstract_inverted_index.budgets | 329 |
| abstract_inverted_index.captive | 101, 292 |
| abstract_inverted_index.changes | 28, 49 |
| abstract_inverted_index.context | 324 |
| abstract_inverted_index.discuss | 295 |
| abstract_inverted_index.efforts | 310 |
| abstract_inverted_index.example | 321 |
| abstract_inverted_index.habitat | 22, 332 |
| abstract_inverted_index.highest | 209 |
| abstract_inverted_index.improve | 11 |
| abstract_inverted_index.limited | 71 |
| abstract_inverted_index.machine | 147 |
| abstract_inverted_index.related | 19 |
| abstract_inverted_index.results | 299, 306 |
| abstract_inverted_index.running | 260 |
| abstract_inverted_index.species | 39 |
| abstract_inverted_index.spring. | 191 |
| abstract_inverted_index.summer, | 188 |
| abstract_inverted_index.support | 308 |
| abstract_inverted_index.tucked, | 256 |
| abstract_inverted_index.walking | 258 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.European | 167 |
| abstract_inverted_index.affected | 24 |
| abstract_inverted_index.behavior | 4, 17, 77, 315 |
| abstract_inverted_index.classify | 118 |
| abstract_inverted_index.collared | 133, 317 |
| abstract_inverted_index.deployed | 99 |
| abstract_inverted_index.detailed | 106, 314 |
| abstract_inverted_index.discrete | 123 |
| abstract_inverted_index.foraging | 222 |
| abstract_inverted_index.keystone | 38 |
| abstract_inverted_index.learning | 148 |
| abstract_inverted_index.unclear, | 65 |
| abstract_inverted_index.variable | 242 |
| abstract_inverted_index.algorithm | 116 |
| abstract_inverted_index.behaviors | 176, 196, 214, 250, 290 |
| abstract_inverted_index.collected | 92 |
| abstract_inverted_index.conducted | 186 |
| abstract_inverted_index.dependent | 202 |
| abstract_inverted_index.elevated, | 219 |
| abstract_inverted_index.generally | 201 |
| abstract_inverted_index.habitats, | 43 |
| abstract_inverted_index.intervals | 155 |
| abstract_inverted_index.knowledge | 72 |
| abstract_inverted_index.potential | 57 |
| abstract_inverted_index.standing, | 257 |
| abstract_inverted_index.stressors | 58 |
| abstract_inverted_index.tri-axial | 97 |
| abstract_inverted_index.variation | 139 |
| abstract_inverted_index.(precision | 223, 261 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Monitoring | 2 |
| abstract_inverted_index.behavioral | 107, 184 |
| abstract_inverted_index.behaviors. | 124 |
| abstract_inverted_index.classified | 151 |
| abstract_inverted_index.compensate | 84 |
| abstract_inverted_index.comprising | 177, 233, 271 |
| abstract_inverted_index.fine-scale | 96 |
| abstract_inverted_index.physiology | 75 |
| abstract_inverted_index.quantified | 137 |
| abstract_inverted_index.responses, | 327 |
| abstract_inverted_index.ruminating | 220 |
| abstract_inverted_index.selection. | 333 |
| abstract_inverted_index.supervised | 114 |
| abstract_inverted_index.Conclusions | 276 |
| abstract_inverted_index.activities. | 54 |
| abstract_inverted_index.combination | 104 |
| abstract_inverted_index.demonstrate | 278 |
| abstract_inverted_index.distinguish | 286 |
| abstract_inverted_index.disturbance | 326 |
| abstract_inverted_index.experience. | 90 |
| abstract_inverted_index.individuals | 61, 82, 198, 228, 244, 266, 301 |
| abstract_inverted_index.investigate | 126, 312 |
| abstract_inverted_index.performance | 142, 193, 207 |
| abstract_inverted_index.populations | 63 |
| abstract_inverted_index.animal-borne | 282 |
| abstract_inverted_index.disturbances | 26, 51, 88 |
| abstract_inverted_index.environment. | 31 |
| abstract_inverted_index.individuals, | 135 |
| abstract_inverted_index.individuals. | 144 |
| abstract_inverted_index.observations | 108, 185 |
| abstract_inverted_index.successfully | 150 |
| abstract_inverted_index.accelerometer | 120, 153, 283 |
| abstract_inverted_index.environmental | 48 |
| abstract_inverted_index.understanding | 13 |
| abstract_inverted_index.Classification | 192, 206 |
| abstract_inverted_index.accelerometers | 98 |
| abstract_inverted_index.classification | 115, 141 |
| abstract_inverted_index.collar-mounted | 95 |
| abstract_inverted_index.generalizability | 128, 296 |
| abstract_inverted_index.behavior-specific | 331 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5050599110 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I4210116649 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.96539108 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |