Predicting physicochemical properties of papayas ( Carica papaya L.) using a convolutional neural networks model approach Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1111/1750-3841.17462
The current state of quality assessment methods for agricultural produce, particularly fruits, heavily relies on manual inspection techniques, which could be subjective, time‐consuming, and prone to human errors. Consequently, there have been emerging trends and needs for non‐destructive methods to evaluate fruit quality accurately and practically. This research aimed to develop a novel approach for predicting the physicochemical properties of papayas using a convolutional neural network (CNN) model that combines image analysis and weight assessment. This study involved capturing images of papayas at different ripening stages, measuring papaya weights, and determining various physicochemical properties such as texture, pH, total soluble solids, and seed weight. A total of 532 images were obtained from 132 papayas, and an additional 1064 images were generated through image augmentation. The dataset was divided into three sets with an 8:1:1 ratio for training, validation, and testing. The CNN model was trained using papaya images and weights as input values to predict and estimate the physicochemical property values. Model performance was evaluated using mean squared error (MSE) and the coefficient of determination ( R 2 ) as metrics. The CNN model, integrated with image processing, could predict the diverse physicochemical properties of papayas with high accuracy. The MSE values estimated for the training and validation sets were 0.0284 and 0.1729, respectively. The R 2 values for the test dataset ranged from 0.71 to 0.94. These findings demonstrate that CNN‐based models could provide detailed and quantitative insights, facilitating improved understanding and management of papaya quality while enhancing predictive modeling accuracy in agriculture. Practical Application This research introduces a new method for accurately predicting the quality of papayas using a computer model. Instead of relying on manual inspection, which can be slow and prone to errors, this model uses images of papayas and their weights to predict properties, including texture, pH, total soluble solids, and seed weight. This can help manage papaya quality better while also improving agricultural production and transportation processes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1111/1750-3841.17462
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1750-3841.17462
- OA Status
- bronze
- Cited By
- 3
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403507075
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403507075Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1111/1750-3841.17462Digital Object Identifier
- Title
-
Predicting physicochemical properties of papayas ( Carica papaya L.) using a convolutional neural networks model approachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-16Full publication date if available
- Authors
-
Shi An, Geunwoo Oh, Dongyoung Lee, Kyungim Baek, Soojin JunList of authors in order
- Landing page
-
https://doi.org/10.1111/1750-3841.17462Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1750-3841.17462Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1750-3841.17462Direct OA link when available
- Concepts
-
Convolutional neural network, Mean squared error, Artificial intelligence, Pattern recognition (psychology), Computer science, Carica, Artificial neural network, Mathematics, Correlation coefficient, Coefficient of determination, Statistics, Machine learning, Horticulture, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403507075 |
|---|---|
| doi | https://doi.org/10.1111/1750-3841.17462 |
| ids.doi | https://doi.org/10.1111/1750-3841.17462 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39415071 |
| ids.openalex | https://openalex.org/W4403507075 |
| fwci | 1.33681928 |
| mesh[0].qualifier_ui | Q000737 |
| mesh[0].descriptor_ui | D029441 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | chemistry |
| mesh[0].descriptor_name | Carica |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D016571 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Neural Networks, Computer |
| mesh[2].qualifier_ui | Q000737 |
| mesh[2].descriptor_ui | D005638 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | chemistry |
| mesh[2].descriptor_name | Fruit |
| mesh[3].qualifier_ui | Q000737 |
| mesh[3].descriptor_ui | D012639 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | chemistry |
| mesh[3].descriptor_name | Seeds |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006863 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Hydrogen-Ion Concentration |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D007091 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Image Processing, Computer-Assisted |
| mesh[6].qualifier_ui | Q000737 |
| mesh[6].descriptor_ui | D029441 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | chemistry |
| mesh[6].descriptor_name | Carica |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D016571 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Neural Networks, Computer |
| mesh[8].qualifier_ui | Q000737 |
| mesh[8].descriptor_ui | D005638 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | chemistry |
| mesh[8].descriptor_name | Fruit |
| mesh[9].qualifier_ui | Q000737 |
| mesh[9].descriptor_ui | D012639 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | chemistry |
| mesh[9].descriptor_name | Seeds |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006863 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Hydrogen-Ion Concentration |
| mesh[11].qualifier_ui | Q000379 |
| mesh[11].descriptor_ui | D007091 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | methods |
| mesh[11].descriptor_name | Image Processing, Computer-Assisted |
| mesh[12].qualifier_ui | Q000737 |
| mesh[12].descriptor_ui | D029441 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | chemistry |
| mesh[12].descriptor_name | Carica |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D016571 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Neural Networks, Computer |
| mesh[14].qualifier_ui | Q000737 |
| mesh[14].descriptor_ui | D005638 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | chemistry |
| mesh[14].descriptor_name | Fruit |
| mesh[15].qualifier_ui | Q000737 |
| mesh[15].descriptor_ui | D012639 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | chemistry |
| mesh[15].descriptor_name | Seeds |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D006863 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Hydrogen-Ion Concentration |
| mesh[17].qualifier_ui | Q000379 |
| mesh[17].descriptor_ui | D007091 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | methods |
| mesh[17].descriptor_name | Image Processing, Computer-Assisted |
| type | article |
| title | Predicting physicochemical properties of papayas ( Carica papaya L.) using a convolutional neural networks model approach |
| awards[0].id | https://openalex.org/G2809444608 |
| awards[0].funder_id | https://openalex.org/F4320332299 |
| awards[0].display_name | |
| awards[0].funder_award_id | (2024‐67017‐42805) |
| awards[0].funder_display_name | National Institute of Food and Agriculture |
| biblio.issue | 11 |
| biblio.volume | 89 |
| biblio.last_page | 7871 |
| biblio.first_page | 7861 |
| topics[0].id | https://openalex.org/T10640 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9876999855041504 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Spectroscopy and Chemometric Analyses |
| topics[1].id | https://openalex.org/T10616 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9824000000953674 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Smart Agriculture and AI |
| topics[2].id | https://openalex.org/T13479 |
| topics[2].field.id | https://openalex.org/fields/29 |
| topics[2].field.display_name | Nursing |
| topics[2].score | 0.9721999764442444 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2916 |
| topics[2].subfield.display_name | Nutrition and Dietetics |
| topics[2].display_name | Food Science and Nutritional Studies |
| funders[0].id | https://openalex.org/F4320332299 |
| funders[0].ror | https://ror.org/05qx3fv49 |
| funders[0].display_name | National Institute of Food and Agriculture |
| is_xpac | False |
| apc_list.value | 4120 |
| apc_list.currency | USD |
| apc_list.value_usd | 4120 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7191519737243652 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C139945424 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5873748660087585 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[1].display_name | Mean squared error |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5692716240882874 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5488336086273193 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5186611413955688 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C2779231358 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46712690591812134 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1752510 |
| concepts[5].display_name | Carica |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4621053636074066 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.44584760069847107 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C2780092901 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4372827410697937 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3433612 |
| concepts[8].display_name | Correlation coefficient |
| concepts[9].id | https://openalex.org/C128990827 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42999961972236633 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192830 |
| concepts[9].display_name | Coefficient of determination |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.259805828332901 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2420264184474945 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C144027150 |
| concepts[12].level | 1 |
| concepts[12].score | 0.12143564224243164 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q48803 |
| concepts[12].display_name | Horticulture |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7191519737243652 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/mean-squared-error |
| keywords[1].score | 0.5873748660087585 |
| keywords[1].display_name | Mean squared error |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5692716240882874 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.5488336086273193 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5186611413955688 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/carica |
| keywords[5].score | 0.46712690591812134 |
| keywords[5].display_name | Carica |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.4621053636074066 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.44584760069847107 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/correlation-coefficient |
| keywords[8].score | 0.4372827410697937 |
| keywords[8].display_name | Correlation coefficient |
| keywords[9].id | https://openalex.org/keywords/coefficient-of-determination |
| keywords[9].score | 0.42999961972236633 |
| keywords[9].display_name | Coefficient of determination |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.259805828332901 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.2420264184474945 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/horticulture |
| keywords[12].score | 0.12143564224243164 |
| keywords[12].display_name | Horticulture |
| language | en |
| locations[0].id | doi:10.1111/1750-3841.17462 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S23579880 |
| locations[0].source.issn | 0022-1147, 1750-3841 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0022-1147 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Food Science |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1750-3841.17462 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Food Science |
| locations[0].landing_page_url | https://doi.org/10.1111/1750-3841.17462 |
| locations[1].id | pmid:39415071 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of food science |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39415071 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5111791505 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shi An |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I117965899 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, USA |
| authorships[0].institutions[0].id | https://openalex.org/I117965899 |
| authorships[0].institutions[0].ror | https://ror.org/01wspgy28 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I117965899 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Hawaiʻi at Mānoa |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sujin An |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, USA |
| authorships[1].author.id | https://openalex.org/A5102705389 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1673-2743 |
| authorships[1].author.display_name | Geunwoo Oh |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210156862 |
| authorships[1].affiliations[0].raw_affiliation_string | Cobslab, Goyang-si, South Korea |
| authorships[1].institutions[0].id | https://openalex.org/I4210156862 |
| authorships[1].institutions[0].ror | https://ror.org/05wp4m669 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210156862 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Korea Educational Broadcasting System |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Geuncheol Oh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Cobslab, Goyang-si, South Korea |
| authorships[2].author.id | https://openalex.org/A5061193191 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2287-2542 |
| authorships[2].author.display_name | Dongyoung Lee |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I117965899 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, USA |
| authorships[2].institutions[0].id | https://openalex.org/I117965899 |
| authorships[2].institutions[0].ror | https://ror.org/01wspgy28 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I117965899 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Hawaiʻi at Mānoa |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dongyoung Lee |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, USA |
| authorships[3].author.id | https://openalex.org/A5112547445 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Kyungim Baek |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I117965899 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, USA |
| authorships[3].institutions[0].id | https://openalex.org/I117965899 |
| authorships[3].institutions[0].ror | https://ror.org/01wspgy28 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I117965899 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Hawaiʻi at Mānoa |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kyungim Baek |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, USA |
| authorships[4].author.id | https://openalex.org/A5042491271 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0865-4565 |
| authorships[4].author.display_name | Soojin Jun |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I117965899 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, USA |
| authorships[4].institutions[0].id | https://openalex.org/I117965899 |
| authorships[4].institutions[0].ror | https://ror.org/01wspgy28 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I117965899 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Hawaiʻi at Mānoa |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Soojin Jun |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1750-3841.17462 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-18T00:00:00 |
| display_name | Predicting physicochemical properties of papayas ( Carica papaya L.) using a convolutional neural networks model approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10640 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9876999855041504 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Spectroscopy and Chemometric Analyses |
| related_works | https://openalex.org/W4382982879, https://openalex.org/W4383721055, https://openalex.org/W4311044000, https://openalex.org/W2755828367, https://openalex.org/W2659933339, https://openalex.org/W2364784002, https://openalex.org/W2909099826, https://openalex.org/W4214620440, https://openalex.org/W4309845446, https://openalex.org/W3212595790 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1111/1750-3841.17462 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S23579880 |
| best_oa_location.source.issn | 0022-1147, 1750-3841 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0022-1147 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Food Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1750-3841.17462 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Food Science |
| best_oa_location.landing_page_url | https://doi.org/10.1111/1750-3841.17462 |
| primary_location.id | doi:10.1111/1750-3841.17462 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S23579880 |
| primary_location.source.issn | 0022-1147, 1750-3841 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0022-1147 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Food Science |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1750-3841.17462 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Food Science |
| primary_location.landing_page_url | https://doi.org/10.1111/1750-3841.17462 |
| publication_date | 2024-10-16 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4311974999, https://openalex.org/W2738581733, https://openalex.org/W2949816023, https://openalex.org/W2101372804, https://openalex.org/W2791753912, https://openalex.org/W4220682887, https://openalex.org/W2162931300, https://openalex.org/W2619851092, https://openalex.org/W2152468120, https://openalex.org/W4293571882, https://openalex.org/W3181643886, https://openalex.org/W2022310367, https://openalex.org/W3010910207, https://openalex.org/W4211190296, https://openalex.org/W4308407596, https://openalex.org/W3100036209, https://openalex.org/W4317036340, https://openalex.org/W2964121744, https://openalex.org/W2032591120, https://openalex.org/W4226058946, https://openalex.org/W2939444586, https://openalex.org/W4299866110, https://openalex.org/W4221063841, https://openalex.org/W3004010804, https://openalex.org/W3094890232, https://openalex.org/W4224033643, https://openalex.org/W4387532372, https://openalex.org/W2010360199, https://openalex.org/W4401356528, https://openalex.org/W2622826443, https://openalex.org/W2921029329, https://openalex.org/W4205651453, https://openalex.org/W4210248601, https://openalex.org/W4389747711, https://openalex.org/W3039595258, https://openalex.org/W4313680665, https://openalex.org/W2060205545, https://openalex.org/W2774118852, https://openalex.org/W4214903337, https://openalex.org/W4221000708 |
| referenced_works_count | 40 |
| abstract_inverted_index.( | 176 |
| abstract_inverted_index.) | 179 |
| abstract_inverted_index.2 | 178, 217 |
| abstract_inverted_index.A | 105 |
| abstract_inverted_index.R | 177, 216 |
| abstract_inverted_index.a | 52, 63, 260, 271 |
| abstract_inverted_index.an | 116, 133 |
| abstract_inverted_index.as | 96, 151, 180 |
| abstract_inverted_index.at | 83 |
| abstract_inverted_index.be | 21, 282 |
| abstract_inverted_index.in | 253 |
| abstract_inverted_index.of | 4, 60, 81, 107, 174, 195, 245, 268, 275, 292 |
| abstract_inverted_index.on | 15, 277 |
| abstract_inverted_index.to | 26, 40, 50, 154, 226, 286, 297 |
| abstract_inverted_index.132 | 113 |
| abstract_inverted_index.532 | 108 |
| abstract_inverted_index.CNN | 142, 183 |
| abstract_inverted_index.MSE | 201 |
| abstract_inverted_index.The | 1, 125, 141, 182, 200, 215 |
| abstract_inverted_index.and | 24, 35, 45, 73, 90, 102, 115, 139, 149, 156, 171, 207, 212, 237, 243, 284, 294, 306, 321 |
| abstract_inverted_index.can | 281, 310 |
| abstract_inverted_index.for | 8, 37, 55, 136, 204, 219, 263 |
| abstract_inverted_index.new | 261 |
| abstract_inverted_index.pH, | 98, 302 |
| abstract_inverted_index.the | 57, 158, 172, 191, 205, 220, 266 |
| abstract_inverted_index.was | 127, 144, 164 |
| abstract_inverted_index.0.71 | 225 |
| abstract_inverted_index.1064 | 118 |
| abstract_inverted_index.This | 47, 76, 257, 309 |
| abstract_inverted_index.also | 317 |
| abstract_inverted_index.been | 32 |
| abstract_inverted_index.from | 112, 224 |
| abstract_inverted_index.have | 31 |
| abstract_inverted_index.help | 311 |
| abstract_inverted_index.high | 198 |
| abstract_inverted_index.into | 129 |
| abstract_inverted_index.mean | 167 |
| abstract_inverted_index.seed | 103, 307 |
| abstract_inverted_index.sets | 131, 209 |
| abstract_inverted_index.slow | 283 |
| abstract_inverted_index.such | 95 |
| abstract_inverted_index.test | 221 |
| abstract_inverted_index.that | 69, 231 |
| abstract_inverted_index.this | 288 |
| abstract_inverted_index.uses | 290 |
| abstract_inverted_index.were | 110, 120, 210 |
| abstract_inverted_index.with | 132, 186, 197 |
| abstract_inverted_index.(CNN) | 67 |
| abstract_inverted_index.(MSE) | 170 |
| abstract_inverted_index.0.94. | 227 |
| abstract_inverted_index.8:1:1 | 134 |
| abstract_inverted_index.Model | 162 |
| abstract_inverted_index.These | 228 |
| abstract_inverted_index.aimed | 49 |
| abstract_inverted_index.could | 20, 189, 234 |
| abstract_inverted_index.error | 169 |
| abstract_inverted_index.fruit | 42 |
| abstract_inverted_index.human | 27 |
| abstract_inverted_index.image | 71, 123, 187 |
| abstract_inverted_index.input | 152 |
| abstract_inverted_index.model | 68, 143, 289 |
| abstract_inverted_index.needs | 36 |
| abstract_inverted_index.novel | 53 |
| abstract_inverted_index.prone | 25, 285 |
| abstract_inverted_index.ratio | 135 |
| abstract_inverted_index.state | 3 |
| abstract_inverted_index.study | 77 |
| abstract_inverted_index.their | 295 |
| abstract_inverted_index.there | 30 |
| abstract_inverted_index.three | 130 |
| abstract_inverted_index.total | 99, 106, 303 |
| abstract_inverted_index.using | 62, 146, 166, 270 |
| abstract_inverted_index.which | 19, 280 |
| abstract_inverted_index.while | 248, 316 |
| abstract_inverted_index.0.0284 | 211 |
| abstract_inverted_index.better | 315 |
| abstract_inverted_index.images | 80, 109, 119, 148, 291 |
| abstract_inverted_index.manage | 312 |
| abstract_inverted_index.manual | 16, 278 |
| abstract_inverted_index.method | 262 |
| abstract_inverted_index.model, | 184 |
| abstract_inverted_index.model. | 273 |
| abstract_inverted_index.models | 233 |
| abstract_inverted_index.neural | 65 |
| abstract_inverted_index.papaya | 88, 147, 246, 313 |
| abstract_inverted_index.ranged | 223 |
| abstract_inverted_index.relies | 14 |
| abstract_inverted_index.trends | 34 |
| abstract_inverted_index.values | 153, 202, 218 |
| abstract_inverted_index.weight | 74 |
| abstract_inverted_index.0.1729, | 213 |
| abstract_inverted_index.Instead | 274 |
| abstract_inverted_index.current | 2 |
| abstract_inverted_index.dataset | 126, 222 |
| abstract_inverted_index.develop | 51 |
| abstract_inverted_index.diverse | 192 |
| abstract_inverted_index.divided | 128 |
| abstract_inverted_index.errors, | 287 |
| abstract_inverted_index.errors. | 28 |
| abstract_inverted_index.fruits, | 12 |
| abstract_inverted_index.heavily | 13 |
| abstract_inverted_index.methods | 7, 39 |
| abstract_inverted_index.network | 66 |
| abstract_inverted_index.papayas | 61, 82, 196, 269, 293 |
| abstract_inverted_index.predict | 155, 190, 298 |
| abstract_inverted_index.provide | 235 |
| abstract_inverted_index.quality | 5, 43, 247, 267, 314 |
| abstract_inverted_index.relying | 276 |
| abstract_inverted_index.solids, | 101, 305 |
| abstract_inverted_index.soluble | 100, 304 |
| abstract_inverted_index.squared | 168 |
| abstract_inverted_index.stages, | 86 |
| abstract_inverted_index.through | 122 |
| abstract_inverted_index.trained | 145 |
| abstract_inverted_index.values. | 161 |
| abstract_inverted_index.various | 92 |
| abstract_inverted_index.weight. | 104, 308 |
| abstract_inverted_index.weights | 150, 296 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accuracy | 252 |
| abstract_inverted_index.analysis | 72 |
| abstract_inverted_index.approach | 54 |
| abstract_inverted_index.combines | 70 |
| abstract_inverted_index.computer | 272 |
| abstract_inverted_index.detailed | 236 |
| abstract_inverted_index.emerging | 33 |
| abstract_inverted_index.estimate | 157 |
| abstract_inverted_index.evaluate | 41 |
| abstract_inverted_index.findings | 229 |
| abstract_inverted_index.improved | 241 |
| abstract_inverted_index.involved | 78 |
| abstract_inverted_index.metrics. | 181 |
| abstract_inverted_index.modeling | 251 |
| abstract_inverted_index.obtained | 111 |
| abstract_inverted_index.papayas, | 114 |
| abstract_inverted_index.produce, | 10 |
| abstract_inverted_index.property | 160 |
| abstract_inverted_index.research | 48, 258 |
| abstract_inverted_index.ripening | 85 |
| abstract_inverted_index.testing. | 140 |
| abstract_inverted_index.texture, | 97, 301 |
| abstract_inverted_index.training | 206 |
| abstract_inverted_index.weights, | 89 |
| abstract_inverted_index.Practical | 255 |
| abstract_inverted_index.accuracy. | 199 |
| abstract_inverted_index.capturing | 79 |
| abstract_inverted_index.different | 84 |
| abstract_inverted_index.enhancing | 249 |
| abstract_inverted_index.estimated | 203 |
| abstract_inverted_index.evaluated | 165 |
| abstract_inverted_index.generated | 121 |
| abstract_inverted_index.improving | 318 |
| abstract_inverted_index.including | 300 |
| abstract_inverted_index.insights, | 239 |
| abstract_inverted_index.measuring | 87 |
| abstract_inverted_index.training, | 137 |
| abstract_inverted_index.accurately | 44, 264 |
| abstract_inverted_index.additional | 117 |
| abstract_inverted_index.assessment | 6 |
| abstract_inverted_index.inspection | 17 |
| abstract_inverted_index.integrated | 185 |
| abstract_inverted_index.introduces | 259 |
| abstract_inverted_index.management | 244 |
| abstract_inverted_index.predicting | 56, 265 |
| abstract_inverted_index.predictive | 250 |
| abstract_inverted_index.processes. | 323 |
| abstract_inverted_index.production | 320 |
| abstract_inverted_index.properties | 59, 94, 194 |
| abstract_inverted_index.validation | 208 |
| abstract_inverted_index.Application | 256 |
| abstract_inverted_index.CNN‐based | 232 |
| abstract_inverted_index.assessment. | 75 |
| abstract_inverted_index.coefficient | 173 |
| abstract_inverted_index.demonstrate | 230 |
| abstract_inverted_index.determining | 91 |
| abstract_inverted_index.inspection, | 279 |
| abstract_inverted_index.performance | 163 |
| abstract_inverted_index.processing, | 188 |
| abstract_inverted_index.properties, | 299 |
| abstract_inverted_index.subjective, | 22 |
| abstract_inverted_index.techniques, | 18 |
| abstract_inverted_index.validation, | 138 |
| abstract_inverted_index.agricultural | 9, 319 |
| abstract_inverted_index.agriculture. | 254 |
| abstract_inverted_index.facilitating | 240 |
| abstract_inverted_index.particularly | 11 |
| abstract_inverted_index.practically. | 46 |
| abstract_inverted_index.quantitative | 238 |
| abstract_inverted_index.Consequently, | 29 |
| abstract_inverted_index.augmentation. | 124 |
| abstract_inverted_index.convolutional | 64 |
| abstract_inverted_index.determination | 175 |
| abstract_inverted_index.respectively. | 214 |
| abstract_inverted_index.understanding | 242 |
| abstract_inverted_index.transportation | 322 |
| abstract_inverted_index.physicochemical | 58, 93, 159, 193 |
| abstract_inverted_index.non‐destructive | 38 |
| abstract_inverted_index.time‐consuming, | 23 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5042491271 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I117965899 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.73330241 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |