Predicting Satisfied User and Machine Ratio for Compressed Images: A Unified Approach Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.17477
Nowadays, high-quality images are pursued by both humans for better viewing experience and by machines for more accurate visual analysis. However, images are usually compressed before being consumed, decreasing their quality. It is meaningful to predict the perceptual quality of compressed images for both humans and machines, which guides the optimization for compression. In this paper, we propose a unified approach to address this. Specifically, we create a deep learning-based model to predict Satisfied User Ratio (SUR) and Satisfied Machine Ratio (SMR) of compressed images simultaneously. We first pre-train a feature extractor network on a large-scale SMR-annotated dataset with human perception-related quality labels generated by diverse image quality models, which simulates the acquisition of SUR labels. Then, we propose an MLP-Mixer-based network to predict SUR and SMR by leveraging and fusing the extracted multi-layer features. We introduce a Difference Feature Residual Learning (DFRL) module to learn more discriminative difference features. We further use a Multi-Head Attention Aggregation and Pooling (MHAAP) layer to aggregate difference features and reduce their redundancy. Experimental results indicate that the proposed model significantly outperforms state-of-the-art SUR and SMR prediction methods. Moreover, our joint learning scheme of human and machine perceptual quality prediction tasks is effective at improving the performance of both.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.17477
- https://arxiv.org/pdf/2412.17477
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405767904
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405767904Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.17477Digital Object Identifier
- Title
-
Predicting Satisfied User and Machine Ratio for Compressed Images: A Unified ApproachWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-23Full publication date if available
- Authors
-
Qi Zhang, Shanshe Wang, Xinfeng Zhang, Siwei Ma, Jingshan Pan, Wen GaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.17477Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.17477Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.17477Direct OA link when available
- Concepts
-
Computer science, Compressed sensing, Artificial intelligence, Machine learning, Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405767904 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.17477 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.17477 |
| ids.openalex | https://openalex.org/W4405767904 |
| fwci | |
| type | preprint |
| title | Predicting Satisfied User and Machine Ratio for Compressed Images: A Unified Approach |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11165 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9894999861717224 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image and Video Quality Assessment |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6082046031951904 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C124851039 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4942190945148468 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2665459 |
| concepts[1].display_name | Compressed sensing |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.45362889766693115 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3622059226036072 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.34044450521469116 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6082046031951904 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/compressed-sensing |
| keywords[1].score | 0.4942190945148468 |
| keywords[1].display_name | Compressed sensing |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.45362889766693115 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.3622059226036072 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.34044450521469116 |
| keywords[4].display_name | Computer vision |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.17477 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.17477 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.17477 |
| locations[1].id | doi:10.48550/arxiv.2412.17477 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.17477 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100348829 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7041-643X |
| authorships[0].author.display_name | Qi Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Qi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100385183 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shanshe Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Shanshe |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5055937409 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7517-3868 |
| authorships[2].author.display_name | Xinfeng Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Xinfeng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5039832462 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2731-5403 |
| authorships[3].author.display_name | Siwei Ma |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ma, Siwei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5026533187 |
| authorships[4].author.orcid | https://orcid.org/0009-0002-0968-0658 |
| authorships[4].author.display_name | Jingshan Pan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pan, Jingshan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5018478553 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8070-802X |
| authorships[5].author.display_name | Wen Gao |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Gao, Wen |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.17477 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-12-25T00:00:00 |
| display_name | Predicting Satisfied User and Machine Ratio for Compressed Images: A Unified Approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11165 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9894999861717224 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image and Video Quality Assessment |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.17477 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.17477 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.17477 |
| primary_location.id | pmh:oai:arXiv.org:2412.17477 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.17477 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.17477 |
| publication_date | 2024-12-23 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 58, 67, 89, 94, 137, 153 |
| abstract_inverted_index.In | 53 |
| abstract_inverted_index.It | 31 |
| abstract_inverted_index.We | 86, 135, 150 |
| abstract_inverted_index.an | 119 |
| abstract_inverted_index.at | 199 |
| abstract_inverted_index.by | 5, 13, 104, 127 |
| abstract_inverted_index.is | 32, 197 |
| abstract_inverted_index.of | 39, 82, 113, 189, 203 |
| abstract_inverted_index.on | 93 |
| abstract_inverted_index.to | 34, 61, 71, 122, 144, 161 |
| abstract_inverted_index.we | 56, 65, 117 |
| abstract_inverted_index.SMR | 126, 181 |
| abstract_inverted_index.SUR | 114, 124, 179 |
| abstract_inverted_index.and | 12, 45, 77, 125, 129, 157, 165, 180, 191 |
| abstract_inverted_index.are | 3, 22 |
| abstract_inverted_index.for | 8, 15, 42, 51 |
| abstract_inverted_index.our | 185 |
| abstract_inverted_index.the | 36, 49, 111, 131, 173, 201 |
| abstract_inverted_index.use | 152 |
| abstract_inverted_index.User | 74 |
| abstract_inverted_index.both | 6, 43 |
| abstract_inverted_index.deep | 68 |
| abstract_inverted_index.more | 16, 146 |
| abstract_inverted_index.that | 172 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.with | 98 |
| abstract_inverted_index.(SMR) | 81 |
| abstract_inverted_index.(SUR) | 76 |
| abstract_inverted_index.Ratio | 75, 80 |
| abstract_inverted_index.Then, | 116 |
| abstract_inverted_index.being | 26 |
| abstract_inverted_index.both. | 204 |
| abstract_inverted_index.first | 87 |
| abstract_inverted_index.human | 99, 190 |
| abstract_inverted_index.image | 106 |
| abstract_inverted_index.joint | 186 |
| abstract_inverted_index.layer | 160 |
| abstract_inverted_index.learn | 145 |
| abstract_inverted_index.model | 70, 175 |
| abstract_inverted_index.tasks | 196 |
| abstract_inverted_index.their | 29, 167 |
| abstract_inverted_index.this. | 63 |
| abstract_inverted_index.which | 47, 109 |
| abstract_inverted_index.(DFRL) | 142 |
| abstract_inverted_index.before | 25 |
| abstract_inverted_index.better | 9 |
| abstract_inverted_index.create | 66 |
| abstract_inverted_index.fusing | 130 |
| abstract_inverted_index.guides | 48 |
| abstract_inverted_index.humans | 7, 44 |
| abstract_inverted_index.images | 2, 21, 41, 84 |
| abstract_inverted_index.labels | 102 |
| abstract_inverted_index.module | 143 |
| abstract_inverted_index.paper, | 55 |
| abstract_inverted_index.reduce | 166 |
| abstract_inverted_index.scheme | 188 |
| abstract_inverted_index.visual | 18 |
| abstract_inverted_index.(MHAAP) | 159 |
| abstract_inverted_index.Feature | 139 |
| abstract_inverted_index.Machine | 79 |
| abstract_inverted_index.Pooling | 158 |
| abstract_inverted_index.address | 62 |
| abstract_inverted_index.dataset | 97 |
| abstract_inverted_index.diverse | 105 |
| abstract_inverted_index.feature | 90 |
| abstract_inverted_index.further | 151 |
| abstract_inverted_index.labels. | 115 |
| abstract_inverted_index.machine | 192 |
| abstract_inverted_index.models, | 108 |
| abstract_inverted_index.network | 92, 121 |
| abstract_inverted_index.predict | 35, 72, 123 |
| abstract_inverted_index.propose | 57, 118 |
| abstract_inverted_index.pursued | 4 |
| abstract_inverted_index.quality | 38, 101, 107, 194 |
| abstract_inverted_index.results | 170 |
| abstract_inverted_index.unified | 59 |
| abstract_inverted_index.usually | 23 |
| abstract_inverted_index.viewing | 10 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.Learning | 141 |
| abstract_inverted_index.Residual | 140 |
| abstract_inverted_index.accurate | 17 |
| abstract_inverted_index.approach | 60 |
| abstract_inverted_index.features | 164 |
| abstract_inverted_index.indicate | 171 |
| abstract_inverted_index.learning | 187 |
| abstract_inverted_index.machines | 14 |
| abstract_inverted_index.methods. | 183 |
| abstract_inverted_index.proposed | 174 |
| abstract_inverted_index.quality. | 30 |
| abstract_inverted_index.Attention | 155 |
| abstract_inverted_index.Moreover, | 184 |
| abstract_inverted_index.Nowadays, | 0 |
| abstract_inverted_index.Satisfied | 73, 78 |
| abstract_inverted_index.aggregate | 162 |
| abstract_inverted_index.analysis. | 19 |
| abstract_inverted_index.consumed, | 27 |
| abstract_inverted_index.effective | 198 |
| abstract_inverted_index.extracted | 132 |
| abstract_inverted_index.extractor | 91 |
| abstract_inverted_index.features. | 134, 149 |
| abstract_inverted_index.generated | 103 |
| abstract_inverted_index.improving | 200 |
| abstract_inverted_index.introduce | 136 |
| abstract_inverted_index.machines, | 46 |
| abstract_inverted_index.pre-train | 88 |
| abstract_inverted_index.simulates | 110 |
| abstract_inverted_index.Difference | 138 |
| abstract_inverted_index.Multi-Head | 154 |
| abstract_inverted_index.compressed | 24, 40, 83 |
| abstract_inverted_index.decreasing | 28 |
| abstract_inverted_index.difference | 148, 163 |
| abstract_inverted_index.experience | 11 |
| abstract_inverted_index.leveraging | 128 |
| abstract_inverted_index.meaningful | 33 |
| abstract_inverted_index.perceptual | 37, 193 |
| abstract_inverted_index.prediction | 182, 195 |
| abstract_inverted_index.Aggregation | 156 |
| abstract_inverted_index.acquisition | 112 |
| abstract_inverted_index.large-scale | 95 |
| abstract_inverted_index.multi-layer | 133 |
| abstract_inverted_index.outperforms | 177 |
| abstract_inverted_index.performance | 202 |
| abstract_inverted_index.redundancy. | 168 |
| abstract_inverted_index.Experimental | 169 |
| abstract_inverted_index.compression. | 52 |
| abstract_inverted_index.high-quality | 1 |
| abstract_inverted_index.optimization | 50 |
| abstract_inverted_index.SMR-annotated | 96 |
| abstract_inverted_index.Specifically, | 64 |
| abstract_inverted_index.significantly | 176 |
| abstract_inverted_index.discriminative | 147 |
| abstract_inverted_index.learning-based | 69 |
| abstract_inverted_index.MLP-Mixer-based | 120 |
| abstract_inverted_index.simultaneously. | 85 |
| abstract_inverted_index.state-of-the-art | 178 |
| abstract_inverted_index.perception-related | 100 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |